
(Matrix Eigen Value Problems)

9.1 : The Characteristic Equation of a Matrix

Definitions : Let A  be  any nth  order square matrix and   some scalar,,

(a) Characteristic Matrix

The matrix ( )A I   is called  the characteristic matrix of A (where I is a unit matrix of order n).

A I

a a a

a a a

a a a

n

n

n n nn
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PPPP








11 12 1

21 22 2

1 2

....

....

.... .... .... ....

....

(b) Characteristic Polynomial

The determinant | |A I   when expanded yields a polynomial   ( )  of degree n in   and

is called the characteristic  polynomial of the matrix A.

(c) Characteristic  Equation

The equation   ( ) | |  A I 0  is called  the characteristic equation of matrix A.

(d) Characteristic Roots

The roots of a characteristic equation | |A I  0

  1 2, ,......... n (say) are called characteristic  roots of the matrix A. Characteristic roots

are also called latent roots or eigen-values.
(e) Spectrum. The set of characteristic  roots of a matrix A is called  the spectrum of

matrix A .

Example – 1 : Find  the characteristic polynomial of the following matrix 

2 1 1

1 2 3

2 1 2





L

N
MMM

O

Q
PPP .

Solution : Characteristic matrix  of any matrix  A is given by A I  .
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A I 





L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

 

2 1 1

1 2 3

2 1 2

1 0 0

0 1 0

0 0 1
 


 



 

L

N
MMM

O

Q
PPP

2 1 1

1 2 3

2 1 2







The characteristic polynomial is | |A I 

| |A I 

 



 









2 1 1

1 2 3

2 1 2

      3 26 12 15.

Example – 2 : Find the characteristic roots and spectrum of matrix A

8 6 2

6 7 4

2 4 3





 



L

N
MMM

O

Q
PPP

 .

Solution :  Characteristic matrix  is A I 

A I 



 



L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

 

8 6 2

6 7 4

2 4 3

1 0 0

0 1 0

0 0 1
 


 

  

 

L

N
MMM

O

Q
PPP

8 6 2

6 7 4

2 4 3







Characteristic equation in | |A I  0

i.e,

8 6 2

6 7 4

2 4 3

0

 

  

 









   3 218 45 0            ( )2 18 45 0  

   ( )( )  15 3 0

   0 3 15, , .Hence the characteristic  roots  of A are 0, 3, 15 and the spectrum is

{0, 3,  15}.

9.2 :  Eigen Values & Eigen  Vectors

Let  A aij  be a m × n matrix.

Consider the vector equation Ax = x ............ (1)

Where    may be real or complex : Here the zero vector  x=0 is a trivial solution of (1).

The  value of      for which (1) has a solution x  0  is  called the characteristic value or  eigen

value of the matrix  A and the corresponding solution x  0  of (1) are  called eigen vectors or

characteristic vector of A corresponding to the eigen value  .

The set of eigen values are called spectrum of A. The largest of the absolute values  of the   eigen
values  of A is called the  spectral radius of  A.
The problem of determing the eigen values & eigen vectors of a matrix is called  an eigen value
problem.

How to solve :

Let  A aij  be a square matrix.
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1. Consider the characteristic matrix as  ( )A I   where I is an identity..

2. Write the charateristic equation as det ( )A I  0

3. Solving the characteristic equation we can fixed the valus of 1  called  the eigen values.

Let, 
1
, 

2
, 

3
 be the  eigen  value of A.

4. Corresponding to   1 2 3, ,  we can find there eigen vectors satisfying

Ax x 1 , Ax x 2 &  Ax x 3   respectively..

Important properties of Eigen Values

Theorem – 1 : (a) The product of the eigen values  of a matrix  An n   is equal to its determinant.

(b) The  sum of the eigen  values of a matrix is the trace  of the matrix.

Proof : (a) If   1 2, ,........, n  are n  eigen values of AA

| ) ( ) ( )( )....( )A I n
n           1 1 2

Put,   0 ,

| | ( ) .( )( )....( )A n
n    1 1 2     ( ) .( ) . . ...1 1 1 2

n n
n  

= (–1)2n 
1
, 

2
........

n
.

   1 2. ... n

From this result, we can say that  a matrix is singular if it has at least one zero  eigen value and
non singular  if all its   eigen  values are non-zero.

(b) Let A

a a a

a a a

a a a



L

N
MMM

O

Q
PPP

11 12 13

21 22 23

31 32 33

| |A I

a a a

a a a

a a a

  















0
11 12 13

21 22 23

31 32 33

      3 2
11 22 33 0( )...a a a ................. (i)

If   1 2 3, ,  be the  eigen values of A, then

| | ( ) ( )( )( )A I            1 03
1 2 3

         3 2
1 2 3 0( ) .................. (ii)

 Comparing (i) and (ii), we get

  1 2 3 11 22 33    a a a

Theorem – 2 : If   is an eigen value of a matrix A, then 
1


 is the eigen value of AA–1.

Proof : If x be  the eigen  vector corresponding to eigen value   , then
Ax = x

Premultiply both sides by A1 .

A Ax A x A A x A x     1 1 1 1.( ) ( ). b g
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
1 1


.x A x   

1


 is an eigen value of A1 .

In general,

If   1 2, ,... n  be the  eigen values  of A then

1 1 1

1 2  
, ,.....

n
 be  the eigen values of A1 .

Theorem – 3 :  If  be an  eigen value of a matrix  A then  m  be  an eigen  value of a  matrix  Am,
(m > 0).

Proof: If x be  the  eigen vector corresponding  to the eigen values ,  then

Ax = x  ......... (i)

Premultiply by A on both  sides,

A Ax A x.( ) ( ) 

 ( . ) .A A x Ax    A x Ax2  .  by (i)

 A x x2 2  .................(ii)

Again pre - multiply by A both  sides,

A A x A x.( .( )2 2   ( . ). .A A x Ax2 2 

 A x x3 2  . by (i)    A x x3 3 

Similarly, A x xm m   which shows that m  is the eigen  value of A mm .( ) 0
In general,

If   1 2, ,..... n  by the eigen values of A, then   1 2
m m

n
m, ,.....  be  the  eigen values of A mm .( ) 0 .

Theorem – 4 : If    be an eigen value of a non -singular matrix A, show that  |A|/  is an  eigen
value of the matrix adj A.

Proof : If  x be the eigen vectors  corresponding to the eigen  value    then

Ax x 
Pre-multiply both sides by (adj.A).

( ).( ) ( ) ( )adj A Ax adj A x 

 ( ).( ) ( ).adj A A x adj A x 

 | |. ( )A Ix adj A x  ( ) | |.adj A A A Ib g


| |
. ( ) .

A
x adj A x




which shows that 
| |A


 is  the eigen  value of adj A.

Theorem –5: (a)  is  characteristic root of a matrix A, iff  there exists a non-zero vector X such
that AX = X.

Proof : Let A  be an  n × n matrix . If   be a characteristic root of A, then | |A I  0
that is , the characteristic matrix  ( )A I   is singular..
Hence there exists  a non-zero solution of the system

( )A I X  0  or, AX X  .
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Conversely, let there exist  a non-zero vector  X such that

AX X  .

Thus there  exists a non-zero solution  of the equation

( )A I X  0 .

Therefore the coefficient matrix  ( )A I   must be singular..

This implies that | |A I  0

that  is ,   is a characteistic root of the matrix A.

(b) Corresponding  to an eigen  value of a matrix  there will correspond different  eigen vectors
of the  matrix  but corresponding to one eigen vector of a matrix there cannot correspond
more than one eigen  value of it.

Proof : Since the  system of equations. ( )A I X  0

is  homogeneous, it is obvious  that, if X be an eigen  vector of A, then kX , where k( ) 0  is any
scalar, is also an eigen  vector  of A corresponding to the same  eigen value.

Let X( ) 0  be the eigen vector of a matrix  A corresponding to the eigen value  . Then X

satisfies  the equation.

AX X  .

Let k be any non-zero scalar so that k X  0 [by (1)].

Now  A kX k A X k X( ) ( ) ( )    ( )kX .

Thus  the non-zero  vector kX satisfies the equation (1). Hence kX is also  an eigen vector  of the
matrix A corresponding to the  eigen value  .
Thus there are more than one eigen vector  of A corresponding to the same eigen  value of A.

On  the other hand, if 1  and   2  be two eigen values  corresponding  to the  same eigen vector

X of A, then AX X 1   and  AX X 2

that is ,  1 2X X  or, ( ) 1 2 0 X .

But X  0 , therefore   1 2 .

Thus the  eigen vector  X of a matrix A cannot correspond to more  than one eigen value of A.

(c) Two  eigen vectors of a square matrix  A over a field  F corresponding to two  distinct  eigen
values of A are linearly independent.         [B.P.U.T. – 2013

Proof : Let X1  and X2  be two  eigen   vectors  of A corresponding to two distinct eigen values 1  and


2
  respectively. Then AX X1 1 1   and AX X2 2 2   ...............(1)

Let us  consider the relation a X a X1 1 2 2 0  ........... (2)

where a
1
 and  a

2   
are scalars.

Then we have  a
1
AX

1
 + a

2
AX

2
 = 0 .............(2)

or, a X a X1 1 1 2 2 2 0   , from  (1).

Also a X a X1 1 1 2 1 2 0   , from  (2).

Subtracting, a X2 1 2 2 0( )   .

This gives  a2 0 , since   1 2 0   and  X2 0 .
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Similarly it can be  shown that a1 0 , which proves that X1   and X2   are  linearly independent.

In general, a set of eigen vectos of an n×n  matrix A, one each corresponding to different  eigen
values of A, is linearly  independent.

(d) The eigen values  of a unitary matrix are of unit modulus.
Proof : Let A  be  a unitary matrix, so that AA = I

where we denote the transpose conjugate of A by A

If X be the eigen vector  of A corresponding  to the eigen value , then we have

AX X  .......... (2)
Taking  transpose conjugate of both sides of (2), we get

[AX] = [ x]

or, X A X    .......... (3)

From (2)  and (3) , we have

X A AX X X    

or, X A A X X X  ( )  

or, X IX X X  

or, ( )1 0  X X

Now, since XX  0 , from (4)  , we have   1

that is , | | 2 =1, giving | |  1 .

(e) The  eigen values  of a real symmetric matrix  are real.

Proof : Let A be an n×n real symmetric matrix. Assume that some of the eigen values   of A are

complex numbers. Then, for the  n×n identity  matrix I, we have | |A I  0 .
Therefore there exists a non-null solution X

1
  of the system of homogeneous equations

( )A I X  0

or, ( )A I X  1 0    or  AX X1 1  .

Taking  transpose of the conjugate, we have

[ ] [ ]AX XT T
1 1 

or, X A X
T T T

1 1     or  X A X
T T

1 1 

as A  is real symmetric, therefore A A AT T 

Multiplying from the right by X1 , we get

X AX X XT T
1 1 1 1     or  X X X XT T

1 1 1 1 

or,  X X X XT T
1 1 1 1     or ( )  X XT

1 1 0

Now  X
1
 is a non-null matrix

Therefore X XT
1 1 0

Hence,    0 ,  that is ,  
Therefore   is purely real. This proves the theorem.
Cor. The eigen values  of a real skew symmetric matrix  are either purely imaginary or zero.

(Here A A AT T   ).
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(f) The eigen values  of a skew - Hermitian  matrix are either purely imaginary or zero.

Proof : Let A be a skew-Hermitian matrix  so that iA is a Hermitian matrix. If X be the eigen vector of
A corresponding  to the  eigen  value  then  we have

AX = X

or, i(AX) = i (X)

or, (iA)X = (iX

Thus i is an eigen  value of the  matrix iA. But iA is a Hermitian matrix. Hence the eigen  values
of iA are all real . Therefore is either  purely imaginary or zero.

(g) The  eigen  vectors  coresponding  to two distinct eigen  values  of a real symmetric matrix
are orthogonal.           [B.P.U.T. – 2011

Proof : Let A be a real symmetric matrix. Let X
1
 and X

2
 be two eigen  vectors  of A corresponding to

two distinct eigen values 
1
 and 

2
 . Hence we have

AX X1 1 1   and AX X2 2 2  . .... (1)

Now , since  AX X1 1 1  , we have  [ ] ,AX XT T
1 1 1    being  real that is , X A XT T

1 1 1 

since A =AT, A being  symmetric.
Post - multiplying both sides by X

2
, we get

X AX X XT T
1 2 1 1 2 

or, X X X XT T
1 2 2 1 1 2  ,     by  (1)

or, ( ) 1 2 1 2 0 X XT .

But  1 2 ;    therefore X XT
1 2 0 ,

that is, X1  is orthogonal to X2 , since X1 0 .

(h) The eigen values  of an n × n matrix  A and P–1AP are the same where P is an n × n  non-
singular matrix.

Proof : Let  B = P–1AP ,  where P is an invertible matrix.

We have B I P AP I   1 .

Now P I P P IP I  1 1( ) .  

Therefore B I P AP P I P    1 1( )   P A I P1 ( )

Hence | | | ||( || |,B I P A I P   1   where | | detA A

 | || || |P P A I1   | || |P P A I1 

 | || |I A I   | |A I

Thus the matrices A and B have  the same  characteristic polynomial and hence they will have
same eigen values.

(i) The eigen values of an orthogonal matrix are of unit moduls.
Proof : Let A be an orthogonal matrix defined over the field F. Then

A A IT  ...(1)

where AT  is the transpose of A.

Let  be an eigen value  of A, x being  the corresponding eigen  vector. Hence
AX = X .....(2)
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Taking transpose of both sides of (2), we get

[ ] [ ]AX XT T 

or, X A XT T T  . ..... (3)

From (2) and (3), we have

X A AX X XT T T  

or, X A A X X XT T T( )      or  X IX X XT T 2 , by  (1)

Therefore   ( )1 02  X XT

Now X being the eigen vector, X and XT  are non-zero vectors.

Hence 1 02 

or, 2 1 , giving  | |  1 .

(j) If  A be  square  matrix, then the sum of the characteristic roots of A is equal to the trace of
A.

Proof : Let A  be the squre matrix  [ ]aij  of  order n. Then we have

T A ar ij

i

n

( ) 



1

If 
1
, 

2
, ...., 

n
 be the characteristic roots of A, then

| | ( ) ( )( ).....( )A I n
n           1 1 2 ..... (1)

The  coefficient  of n1  in | |A I   is ( ) 



1 1

1

n
ij

i

n

a

and  the coefficient of n1  on the right-hand side of (1) is  ( ) 



1 1

1

n
ij

i

n

a

Therefore ( ) ( )  







 1 11

1

1

1

n
ij

i

n
n

i

i

n

a 

which gives  T A ar ij

i

n

i

i

n

( )  
 

 
1 1



(k) If  is an eigen value of A, then 2 is eigen value of A2.
Proof : Let  be an eigen value of A.  AX = X.

Where X is an non-zero column matrix.
Now A2X = A(AX) = A(X)  = AX = (X) = X
Hence 2 is an eigen values of A.

Illustrative Examples

Example –1 : Find the eigen values and eigen vectors  of the following matrix 
1 0

0 3

L
NM
O
QP

Solution :  Let, A 


L
NM
O
QP 

1 0

0 3
2 2

 be a matrix  of order  –2

Consider the characteristic equation
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det( )A I  0


1 0

0 3
0



 





  ( ) ( )1 3 0    

    1 3and , are the eigen values of A.
Hence the spectrum of A is {4, –6}
To find the eigen  vector 

1
 = 1

Let X x x
T

 1 2 0b g  be  a eigen vector cover to eigen value 
1
 = 1

  ( )A I X  0

  
1 1 0

0 3 1

0

0

1

2



 

F
HG

I
KJ
F
HG
I
KJ 
F
HG
I
KJ

x

x
   

0 0

0 4

0

0

1

2

F
HG
I
KJ
F
HG
I
KJ 
F
HG
I
KJ

x

x

 0.x
1
+ 0.x

2
 = 0 ... (1) ,  0.x

1 
– 4.x

2
 = 0 ... (2)

equation (2)  – 4 02x      x2 0   x
1
= 1

 ( , ) ,x x xT T

1 2 1 0 b g    x T
1 1 0( , )    an eigen vector is X = 

1

0

 
 
 

 1 0,
T

 is a eigen vector of A corresponding  to the eigen value 
1
 = 1 and so also any constant

multiple of 1 0,
T

.

To find the  eigen value 
2
 = – 3

Let x = [x
1
,x

2
]T to be a eigen value of A corresponding to the eigen value 

2
 = –3

 ( )A I x 2 0


1 3 0

0 3 3

0

0
1

2



 

F
HG

I
KJ
F
HG
I
KJ 
F
HG
I
KJ

x

x


4 0

0 0

0

0
1

2

F
HG
I
KJ
F
HG
I
KJ 
F
HG
I
KJ

x

x

 4 0 01 1x x     x
2
= 1

 x x x x
T T T

1 2 2 20 0 1 

  an eigen vector is X = 
1

0

 
 
 

Here 0 1
T

 is  a eigen value of A corresponding to the eigen value  
2
 = –3 and  so also any

constant multiple of   [0  1]

Therefore the desired  eigen values are 1 and – 3 and the corresponding eigen value are  [ ]1 0 T

& [ ]0 1 T  and so any constant multiple of the eigen vectors.
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Example –2 : Find  the eigen  values and eigen vectors of  A
0 1

0 i

L
NM
O
QP

Find  the algebraic and the geometric multiplicities of the eigen  values.

Solution : Here | |A I
i

 









1 0

0
0  gives  ( )( ) .1 0   i

Therefore,  the eigen values of A  are 1 and i.  These are simple eigen values, their algebraic
multiplicaties being 1.

Let corresponding to the eigen value 1, the eigen vector be X
x

x

L
NM
O
QP

1

2

.

 Now X will be given by  a non-zero  solution of the equation ( . )A I X 1 0  , which gives

0 0

0 1

0

1

0

0
1

2 2i

x

x i x

L
NM

O
QP
L
NM
O
QP




L
NM

O
QP

L
NM
O
QP( )

Here  the rank  of the characteristic matrix is 1 and the equations will have  2 – 1=1
independent solution. Thus the  geometric multiplicity is 1.

Thus x2 0  and x k1   , where   k   is any  non-zero number..

Therefore, X
k


L
NM
O
QP0

  where k  0  , is the  eigen  vector..

Similarly, for the eigen value i, we have ( )A iI X  0  where X
x

x

L
NM
O
QP

1

2

.

Thus 
1 0

0 0

0

0
1

2

L
NM

O
QP
L
NM
O
QP

L
NM
O
QP


i x

x
 that is , 

( )1

0

0

0
1L

NM
O
QP

L
NM
O
QP

i x
.

Here the equations will have one independent  solution.

Thus x1 0  and  x c2  ,   where is any non-zero number..

Therefore X
c


L
NM
O
QP

0
 is  the eigen vector, where c  0 .

Here we see that, for both the eigen values,

algebraic multiplicity  = geometric multiplicity .

Example – 3 : Find  the eigen values and the corresponding eigen vectors of the matrix

6 2 2

2 3 1

2 1 3



 



L

N
MMM

O

Q
PPP

Find  the algebraic and the geometric multiplicities  of the eigen values.
Solution : Let A be the given matrix. We have

     
| |A I 

 

  

 



 

  

 



 

 

 











 









6 2 2

2 3 1

2 1 3

6 2 0

2 3 2

2 1 2

6 2 0

4 4 0

2 1 2
 (R

2
R

2
–R

3
)

( C
2
C

2
–C

3
)
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 
 

 
       ( ) ( )( ) ( ) ( ).2

6 2

4 4
2 10 16 2 82 2




    

Thus the characteristic  equation of the matrix  A is  | |A I  0 , that is , ( ) ( )   2 8 02

Hence the eigen  values of A are 2, 2 and 8.

The eigen vector of the matrix A corresponding to the eigen value   is given by the  non-zero

solution of the equation

( )A I X  0  ............ (1)

  For  = 2, We have 

6 2 2 2

2 3 2 1

2 1 3 2

0

1

2

3

 

  

 

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


x

x

x

, where X

x

x

x



L

N
MMM

O

Q
PPP

1

2

3

 is the eigen vector

or,

4 2 2

2 1 1

2 1 1

0

1

2

3



 



L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


x

x

x

      or,,

 





L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


2 1 1

4 2 2

2 1 1

0
1

2

3

x

x

x

   ( R R1 2 )

or,

 L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

2 1 1

0 0 0

0 0 0

0

0

0

1

2

3

x

x

x
, ( R R R2 2 12   and R R R3 3 1  )

Thus the rank of the characteristic matrix  is 1 and  hence the equations have 3 – 1 = 2 linearly
independent solutions.

From above, we have  

  L

N
MM

O

Q
PP 
L

N
MMM

O

Q
PPP

2
0

0

0

0

0

1 2 3x x x

Or, – 2x
1
 + x

2
 – x

3
= 0

Two independent solutions are X1

1

2

0



L

N
MMM

O

Q
PPP

 and X2

1

0

2



L

N
MMM

O

Q
PPP

.

Every non-zero multiple of these column vectors is an eigen vector of A corresponding to
the eigen value 2.
For  = 8, substituting in (1), the corresponding eigen vector is given by

6 8 2 2

2 3 8 1

2 1 3 8

0
1

2

3

 

  

 

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


x

x

x

     or,,

 

  

 

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


2 2 2

2 5 1

2 1 5

0
1

2

3

x

x

x

or,

 

 

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


2 2 2

0 3 3

0 0 0

0
1

2

3

x

x

x

,           ( R R R R R R R2 2 1 3 3 2 12    , . )
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Thus  the chracteristic  matrix  is of rank 2 and  hence the number of independent  solutions
of the homogeneous equtions will be 3 – 2=1.

Then we have 

  

 

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

2 2 2

3 3

0

0

0

0

1 2 3

2 3

x x x

x x

The equations are    2 2 2 01 2 3x x x  and   3 3 02 3x x .

These  give x x2 3 

or,
x x

k2 3

1 1
    (say)    or,, x k x k2 3  , .

Then we have x k1 2 .

Therefore 
x x x1 2 3

2 1 1



 .

Hence x3

2

1

1

 

L

N
MMM

O

Q
PPP

 is an eigen  vector of A corresponding  to the eigen value   8 .

Any non-zero multiple  of this column vector is an eigen vector of A corresponding  to the eigen
value 8.
We see that  2 is  an eigen value of algebraic  multiplicity 2 and for that we have two linearly
independent solutons.

Thus, for   2 , algebraic  mutiplicity = geometric multiplicity = 1.
Therefore in both cases the eigen  value is regular.

9.3 : Characteristic Vector or Eigen Vector

Any solution of the equation AX X  , other than X = 0 corresponding to some particular value

of  is called the Eigen Vector or Characteristic Vector.

Theorem – 1 :  Prove that a characteristic vector X  of a  matrix A cannot  correspond to more
than one. Characteristic value of A.

Proof : Let us suppose that the characteristic vector X is  corresponding to two characteristic values

1  and 2 , then

AX X 1 and  AX X 2 ... (1)

From (1) and (2), ... (2)

  1 2X X           1 2 0X X 

 ( ) 1 2 0 X    ( ) 1 2 0 

or  1 2 .

Theorem – 2 : Prove  that any square matrix A and its  transpose A have same  eigen values.
Proof : Characteristic equation of A is

| |

....

....

: : .... .....

....

A I

a a a

a a a

a a a

n

n

n n nn

 















11 22 1

21 22 2

1 2

0
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Characteristic equation of A.

| |

....

....

: : .... .....

....

A I

a a a

a a a

a a a

n

n

n n nn

 















11 21 1

12 22 2

1 2

0

But | | | | A A    | | |A I A I    

 Characteristic equation of A and A  are same.

Theorem – 3 : Prove that the matrix A and B AB1   have the same latent roots.

Proof :  The matrices A and B AB1  will have same latent roots if their characteristic equations are
same.

Let B AB C 1

Then characteristic equation of B AB1 can  be written as

C I B A B I   1 .    B AB B I B1 1 .  B A I B1( )

| | | ( ) |C I B A I B   1

 | | | | |B A I B1   = | | )| | | |)A I B B  1    | | (| |)A I B B 1  | | | |A I I   | |A I

i.e, C and A have  same  characteristic equations and thus same latent roots.
Some Results
1. If there is n distinct eigen values  of A, we get n linearly independent eigen  vectors.
2. If   two  or more eigen values  are equal, it may or may not  be  possible to get linearly  independent

eigen vectors  corresponding to the repeated eigen  values.

3. Eigen vector x
i
 corrsponding  to a eigen value  i  is not unique but it can be one of the vectors cx

i

(c is  a  scalar) .
4. An eigen vector cannot  correspond to two different eigen values.
5. If x

1
 and x

2
 are the eigen vectors corresponding  to distinct eigen vlaues of a real symmetric

matrix of order three, then the cross  product of x
1
 and x

2
 is the third eigen vector.

6. The matrix  [ ]A I   is singular..

7. If   1 2, ,.... n  be  the eigen values of A   and K is a scalar then

(a) the eigen values of KA are K K K n  1 2, ,.... .

(b) the eigen values of A KI  are    1 2  K K Kn, ,...., .

Illustrative Examples

Example – 1 : Find the eigen values of the matrix 

1 2 3

0 4 2

0 0 7



L

N
MMM

O

Q
PPP

Solution : Let  be an eigen value of  A  

L

N
MMM

O

Q
PPP

1 2 3

0 4 2

0 0 7

 Characteristic equation of A is |A – I| = 0
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Here A I  

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP




 



L

N
MMM

O

Q
PPP

 







1 2 3

0 4 2

0 0 7

1 0 0

0 1 0

0 0 1

1 2 3

0 4 2

0 0 7

Now |A – I| = 0  

1 2 3

0 4 2

0 0 7

0



 











Expanding along C
1
, we get (1 – ) (–4 – ) (7 – ) = 0

  = 1, –4, 7 are the eigen values of matrix A.

Example – 2 : Find the eigen values and eigen vectors of the matrix A

1 0 1

1 2 1

2 2 3

.

L

N
MMM

O

Q
PPP

Solution : The characteristic equation of matrix A is |A – I| = 0

Here A I 

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP


 





L

N
MMM

O

Q
PPP

 







1 0 1

1 2 1

2 2 3

1 0 0

0 1 0

0 0 1

1 0 1

1 2 1

2 2 3

Now |A – I| = 0 

1 0 1

1 2 1

2 2 3

0

 





L

N
MMM

O

Q
PPP








 Expanding along R
1

 (1 – ) [(2 – ) (3 – ) – 2] + 0 – 1 (2 – 4 + 2) = 0
 (1 – ) (4 – 5 + ) + 2 – 2 = 0 4 – 5 + – 4 + 5 – + 2 – 2 = 0
 – +  –11+ 6 = 0  – 6 + 11 – 6 = 0
Clearl  = 1 satisfies it.
Dividing – 6 + 11 – 6 by synthetic division, we get

( –1) (– 5 + 6) = 0
  = 1, 2, 3

1 1     –6     11   –6
         1    –5     6

1     –5    6      0

Hence eigen values of A are 1, 2, 3.

For  = 1, Let X

x

y

z
1

1

1

1

0

L

N
MMM

O

Q
PPP
  be the eigen vector of A.

Then (A – I) X
1
 = 0  (A – I) X

1
 = 0

  

0 0 1

1 1 1

2 2 2

0

0

0

1

1

1

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

x

y

z



0 0 1

1 1 1

0 0 0

0

0

0

1

1

1

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

x

y

z
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Operating R
3
 R

3
 – 2R

2
, we get

 –x
1
= 0 and x

1
 + y

1
 + z

1
 = 0   x

1
 = 0 and y

1
= –z

1
 = 1 (say)

  X 



L

N
MMM

O

Q
PPP

0

1

1

is an eigen vector of A corresponding to  = 1.

For  = 2, let X

x

y

z

2

2

2

2

0

L

N
MMM

O

Q
PPP
  be an eigen vector of A.

 (A – I) X
2
 = 0 (A – 2I) X

2
 = 0

  

 L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

1 0 1

1 0 1

2 2 1

0

0

0

2

2

2

x

y

z
 

0 0 0

1 0 1

2 2 1

0

0

0

2

2

2

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

x

y

z

Operating R
1
 R

1
 + R

2
, we get

 x
2
 + z

2
 = 0 and 2x

2
 + 2y

2
 + z

2
 = 0

 x
2
 = –z

2
 = 2 (say) 2(2) + 2y

2
 – 2 = 0 y

2
 = –1

 X2

2

1

2

 



L

N
MMM

O

Q
PPP

is an eigen vector of A corresponding to = 2.

For = 3, let X

x

y

z
3

3

3

3

0

L

N
MMM

O

Q
PPP
 be an eigen vector of A.

 (A – I) X
3
 = 0 (A – 3I) X

3
 = 0



 



L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

2 0 1

1 1 1

2 2 0

0

0

0

3

3

3

x

y

z
        

0 2 1

1 1 1

0 4 2

0

0

0

3

3

3







L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

x

y

z

Operating R
1
  R

1
 + 2R

2
 and R

3
  R

3
 – 2R

2
, we get

Operating R
3
 R

3
 + 2R

1

0 2 1

1 1 1

0 0 0

0

0

0

3

3

3





L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

x

y

z
 –2y

3
 + z

3
 = 0 and x

3
 – y

3
 + z

3
 = 0  z

3
 = 2y

3
 = 2 (say) y

3
 = 1, z

3 
= 2

  x
3
 – 1 + 2 = 0 x

3
 = –1

 X3

1

1

2



L

N
MMM

O

Q
PPP

is eigen vector of A corresponding to  = 3.


