——— I

Power Series

7.1 : Introduction

We have seen that homogeneous linear differential equations with constant coefficients can
be solved by algebaric methods and their solutions are elementary functions known from the
calculus (e.g., sin x, cos x, €, In x, x" etc.)

But many differential equations arising from physical problems may have variable co-
efficients and may not permit a general solution in terms of known elementary functions of calculus.
We need method to solve these equations whose solutions may be non-elementary functions.

Legendre’s equation, Bessel’s equation (see chapter 8 and chapter 9) are examples of
differential equations which play an important role in engineering mathematics and for which
power series expansions can be used to obtain information about the form of the solution. The
basic concepts and definitions involved in solving second order linear differential equations by
power series are discussed in this chapter.

7.2 : Power Series and its radius of Convergence

A series of the formay +a; x + a, x%+ ... where ay, a,, a,, ... are real numbers, is called a
power series. It is called a power-series about 0. The general form of a power series about x, € R
is

ag+ay (x —xp) + ay (x —x,)* + ..., where ay, a;, a,, ... € R

which is the set of all real numbers. Since the general form reduces to the form a, + a; x + a, ¥+ .. by
the substitution x" = x — x,, we shall study the nature of power series by considering power series
about 0.

o0
The power series ay + a; x + a2x2 + .... is denoted as Z a,x" .
n=0

o0 o0
The series z a,x" issaid to be convergent at x = ce [ if the series Z a,c" is convergent
n=0 n=0

i.e. if there exists a real number / (called the sum of the series.)
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/
such that Lim (ay+a;c+ a2c2 + ...t a,c")=[and we write
n—
a0+a1c+a2c2+ ..... =/

o0

The power series Z a,x" may not be convergent for all real x.

n=0
Examples :
23
(i) Theseries 1+ x+ BN + o + e is convergent for all real values of x and it represents
e
(if) Theseries 1 —x+x>—x>+ ... is convergent if |x|<| and is not convergent if |x| > | and

1
this series represents Tox for —|< x <
X

(iii) The power series 1 +x+ 2! x>+ 3! x> + ........ is convergent only at x = 0.
Note : A series is said to be divergent if it is not convergent.

Remark : It appears that some power series converges for all xe R . They are called everywhere
convergent power series. Some power series converge only for x = 0. They are called
nowhere convergent power series. Some power series converge for some real x and

o0
diverge for the others. Also we observe that every power series of form Z a,x" is
n=0
convergent at x = 0.

Radius of convergence of a power series :

o0
It can be proved (here we omit the proof) that if a power series z a,x" be neither no-
n=0
where convergent nor everywhere convergent, then there exists a positive real number R such the
o0 o0
series Y |a,x" | converges for all real x satisfying [x| < R and > a,x" diverges for all real x
n=0 n=0
satisfying [x| > R.

o0 o0
The series Y, a,x" is said to be absolutely convergent if > la,x"| is convergent. Also
n=0 n=0
it can be shown that any absolutely convergent series (not necessarily power series) is convergent.
Then from the property of power series (stated above without proof) we can define the radius of
convergence R of a power series as follows :

o0
If z a,x" is neither no where convergent nor everywhere convergent then its radius of
n=0
convergence R is a real number such that the series is convergent for all real x satisfying |x| < R

and divergent for all real x satisfying [x[>R.
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The open interval (-R, R) is called the interval of convergence.

o

If Z a,x" be nowhere convergent (i.e. convergent only for x = 0) we define R = 0 and it the

n=0

power series be everywhere convergent we define R = oo,

Note : It the radius of convergence is a real number R then the power series may or may not
converge at x = +R. There are power series for which both R and —R are points of
convergence, or both R and —R are points of divergence or one of R and —R is a point of
convergence and the other is a point of divergence.

Determination of the radius of convergence :

Here we shall use D’ Alembert’s ratio test or Cauchy’s root test for determining the radius
of convergence of a power series.

D’Alembert’s ratio test (Statement without proof)

Up+1

u

0
Let z u, be an infinite series. Let Lim =1

n—> 0

n=1 n
where/ e R or/ = .

o0

If /eR then the series Z u, is absolutely convertengent (hence convergent) if / < 1 and

n=1

divergent if / > 1. If / = oo then the series Z u, is divergent.

n=1
Cauchy’s root test (Statement without proof)
1
Let Lim|u,|" =1
n— o

where / € R or [= 0.

If/ € R then z u, is absolutely convergent (hence convergent) if / <1 and divergent if / >

n=1

1. Ifl=cothen ), u, is divergent.

n=1

Up+1
u

Note : We observe that the above tests fail to give any conclusion if / = 1 or it Lim and

n—»w

n

1
Lim |u, |" do not exist. In such case we can use Cauchy-Hadamard test (which is beyond
n— oo

the scope of our discussion) for determining the radius of convergence of a power series.
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. . . - | 2n
Example : Find the radius of convergence of the power series z —n(x -3)7".

n=0
[B.PU.T 2005
Solution : The given series is a power series about x = 3. Let x — 3 = x". Then the series becomes
Z _(xr) n
Py 4}’1 .
1 n2n
Let u, = 4—n(x) ,n=0
20D
Then Uy, 1 = F
So Ups1 _ ‘l(xr)Z :l(xr)Z
u, 4 4
1 1
Now Lim l(x')2 = —x? Hence Lim [“2£L| = — (x')?
n —» oo 4 4 n— oo un 4

. < . 1
Then by D’ Alembert’s ratio test, the series Z 4—n(x')2" is convergent of Zx’z <liex?*<4
n=0

. 1
and divergent of Zx’z >1ie (x')?>4.

Now(x')? <4 =|<2
and (x')*>>4 = '>2
So the given power series is convergent if [x — 3| <2 and divergent if [x — 3| > 2.
So the required radius of convergence is 2.
Remark : For more examples on power series see section 7.6.

7.3 : Ordinary and Singular point of a differential equation

We consider the second order linear differential equation

Py g )
dx2+P(x)dx+Q(x)y =0 ..(1

A point x;, is said to be an ordinary point of the differential equation (1) if the functions
P(x), Q(x) both can be expressed as a power series about x, in a neighbourhood of x,,, otherwise.

X, is called a singular point or singularity of the differential equation.

A singularity x,, of the differential equation (1) is called a regular singularity if (x — x,)) P (x)
and (x — x0)2 Q(x) both can be expanded as power series about x,, in a neighbourhood of x,. A

singularity is called an irregular singularity of the differential equation if it is not a regular
singularity.
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Note : A function f'(x) is said to analytic at a point x,, if /' (x) can be expanded as a power seried

about x,, in a neighbourhood of x,,.

Then we can say x,, is an ordinary point of the differential equation (1) if both P (x), Q (x) are

analytic at x.
Ilustration — 1 : We consider the differential equation (1 + x?) y”’+ 2x y’— 2y = 0.

This equation is equivalent to

2x 2 ,dy d2y}
"t - y =0 V===
T 144 { dx dx’
2x -2
HereP (x)= ——>Q(x) =
ereP () 1+ x? 1+ x*

We see that x, 1 + x2 are polynomials and 1 + x% # 0 for all real x and so P (x), Q (x) are both
analytic at any point x,,. Then any point x,, is an ordinary point of the above differential equation.

2
Ilustration — 2 :The differential equation (1 — x?) d—f - 2x% —5y=0 can be expressed as
d X

X
d2y 2x dy 5

dx® 1-x* dx 1-x
x -
2 QW=177
Here we see that P(x), Q (x) are not analytic at x = % 1 since 1 — x? = 0 at these points.
[Derivatives of P(x), Q (x) will not exist at x =+ 1 and so P(x), Q (x) can not be expanded in
power series about x = 1 or about x =—1 since if a function f'(x) can be expanded in a power series
about x = x, then derivatives of all orders of /'(x) must exist at x = x;].

where P (x) =

So 1, —1 are singular points of the above differential equation.

Here we find that (x — 1) P (x), (x — 1)? Q(x) are analytic at x=1 and (x + 1) P (x), (x + 1) Q
(x) are analytic, at x =—1.

So 1, —1 are regular singularities of the above differential equation.

2
Hlustration — 3 :We consider the differential equation x% + 2% +xy=0.
X X
This equation can be expressed as
2
Ay’ xdx

where P (x) = % Q=1

We see that P (x) is not analytic at x = 0.

So 0 is a singularity of the above equation. Also 0 is a regular singularity since x - P (x),
x? Q (x) are analytic at x = 0.
Further we observe that any other point is an ordinary point of the above differential equation.
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7.4 : Power series solution in the neighbourhood of an ordinary point of second
order homogeneous linear differential equation.

We state below the theorem (without proof) on the existence of power series solution of

rp L aqy=o |
e I y (1)
in the neighbourhood of an ordinary point.

Theorem. [Statement without proof].

d* d
Let x,, be an ordinary point of the differential equation d_;} +P (x) ay +Q (x)y=0and let
x

ay and a, be arbitrary but fixed constants. Then there exists a unique function y (x) that is analytic

at x,, where y (x) is a solution of (1) in a certain neighbourhood of this point, and satisfies the

initial conditions y (x)) = a,, ' (x,) = a,. Furthermore, if the power series expansions of P (x), Q (x)

are valid on an interval (x, — R, x, + R), R > 0 then the power series expansion of this solution is

also valid on the same interval.

Note : Here the interval a (x,-R x,, + R) may be the eutire real axis in which case we take R = oo. Now
we shall explain the method of obtaining the power series solution valid in the neighbourhood
of an ordinary point of a differential equation through an example.

dz
Example. Solve : —;) +xy=0.
dx

Solution : Here x = 0 is an ordinary point of the given differential equation.

o0
. . . n
For a solution in power series form, let us assume y = Z a,x .
n=0

ie. y=a0+a1x+a2x2+ ..............

dy _ >
Then i =a;+2a,x+3ayx"+ ...

d d_zy_z 2 2
an dxz_ ay+t32ayx+43a,x"+ ... .

2
Substituting for y and d_f in the given differential equation we get
X

21a,+32a;x+43 a4x2+ . tu(m=1) anx”’z-i- v tx(agta x+a2x2+ ..)=0.
or,2.a,+(32ay+ay)x+43a, +a1)x2 +(5.4as5+a,) X+
+[(m+2)(n+1)a, ,,+a, Jx"+...=0. v (D)

Now (1) can be regarded as an identity if y = Z a,x" is a solution of the given differential
n=0
equation.
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Then equating the coefficients of various powers of x to zero, we get.

a, =0

. )

32ay+ta, =0givingay= 30
L. 201
43a,+ta; =0givinga, = TR
S4a5+a, =0
or,5.4a; =-a,=0,giving
as =0 etc.
Thus (n+2)(n+1)a,,,+a, ; =0

1

or, a,,,= —man_l .. (2)

Substituting n=4,5, 6, ........... in (2) we get
_da 32
RTIA TR

7.4
ag =0, aq =—?a0
and so on.

Hence the formal solution is

where it can be shown that the series

¥ 4x® 7.4y
l-——+—— F o
3! 6! 9!

2x* 5.7
and x———+ o
4! 7!

are convergent for all real x.

So the required solution is

where a,, a, are arbitrary constants.

Remark. If a power series solution about an ordinary point x,, be required we assume a solution

of the fromy = z a, (x - X )n
n=0
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Note : The above method can also be applied to a differential equation of order one about an
ordinary point.

d
[A point x,, is an odinary point of d_y +P (x) y=0 if P (x) is analytic at x;].
X

More examples on solution of differential equation by power series method are given
in illustrative examples

7.5 : Solution about a regular singularity
It x = x,, is a singular point of the differential equation
d? y dy
—+PX)—+QMx)y=0 .. 1
TP QW (1)
then there is no series of the form ) a,(x—x()" suchthat y = Y a,(x—xy)" may bea solution
n=0 n=0
of (1).
However, with a slight modification of the power series method, solutions in a neighbourhood
of regular singularity can be obtained. This method is known as Frobenius method.
We consider the case where x = 0 is a regular singularity of (1). In Frobenius method we assume a
series solution of the form.

y=x Z a,x" where ay # 0. ... )
n=0
o dy d’y . . . . . .
Then substituting y, E,F obtained from (2) in the given differential equation, the
X

coefficients of various powers of x are equated to zero. In this process, equating to zero the smallest
power of x gives a quadratic equation in known as the indicial equation.
The roots of the indicial equation determine the complete solution depending on whether they
are :

(i) distinct and not differing by an integer.

(i) equal

(7ii) distinct and differing by an integer.

Here we shall explain Frobenius method by an example only in case (7).

. : : . 247y dy 20
Illustration : Find a series solution of 2x E—xa‘*(l—x )Y =0 about the regular
singularity x = 0 by Frobenius method.

Solution. We assume for the solution y = xP (¢, + ¢; x + ¢, X2+ +e, X"+ )

where ¢, #0. ... (D)

Then y= D ¢, x?™ ¢, #0.
n=0
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—_—
d _ p+n-1
So == = ch (p+n)x
dx n=0
d 2 +n-2
and =2 = ch(p+n) (p+n-1)xP*"
dx2 n=0
- . dy d’y o .
Substituting these expressions for y, o ? in the given differential equation we get
X dx

2cop(p—1)—coptcyt X+ {2c; (p+ ) p—c, (p+ l)Jrcl})cp+1
{20 P+t (Pt D—c(pt+2)+c;—cyl xPt2
+{2e;(p+3)(p+2)—c3(p+3)tey—c b xP I+ =0
This is an identity. Equating the coefficient of the term of lowest power of x, that is of xP, to
zero we get the indicial equation as
2cop(Pp—1)—coptcy=0
o, 2p(p-1)—p+1=0,(_cy#0)
or, 2p>-3p+1=0
o, 2p-D({p-1=0
1

which gives p =1, )

The roots of the indicial equation are different and the difference is not an integer.
Now equating the coefficients of the other powers of x to zero, we have
2¢i(ptp—ci(pth+e =0

260(p+t2)(pHt D -y (p+2)+tey—¢y =0
25(p+3)(pt2)—c3(pt3)Ftez—cp =0,

2, (ptm)(ptm—-1)—c, (p+tm)+c,—c, , =0 e (2)

for m > 2.

The first equation gives ¢; =0 for (p+1) 2p—-1)+ 1= 0.

sincehere p=1, =

2
Cm—2
From (2) we get ¢, = (2p+2m—l)(p+m—l)’m22 ..... 3)
Putting m=2,3,4, ........ in (3),
1

- —,
We get ¢, 2p+3)(p+1) 0

1 —
S TEprnpen Ao
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Similarly c5 =c;=cy=......... =0,

1
-
4T 2p+7)(p+3) °

1
= C,
2p+7)(2p+3) (p+3) (p+1)
and so on.

Putting these values in (1) we get,

y=xP{cy+ 0 x4 % A o ()
Cp+3)(p+h)  CLp+7)2p+3)(p+3)(p+])

1
We get two linearly independent solutions by putting p =1 and p = ) in (4) and replacing

1
¢y by A when p = 1 and by B where p = Ex where A, B are arbitrary constants. Thus the series

solution of the given equation is

2 4 1 2 4
y:Ax(l+x—+ SN J+Bx2 (1+x_+ AN J e (5)
25 2459

Note : Here P()= —— = ———,x %0
ote : Here P(x) 2 o

1-x?
Q)= —2,)(7?50
2x

Here x P (x) and x? Q (x) are analytic at x = 0. If the power series expansions of x P (x)
and x*> Q (x) are valid in (-R, R) then we can say that solution (5) is valid for 0 < x| <R
where R > 0.

Illustrative Examples

(x-2)"
n!

[B.PU.T —2007

[ee]
Example — 1 : What is the radius of convergence of the power series Z
n=0

?

Solution : The given series is a power series about x = 2.

s 1
If the series be expressed as Z a,(x—2)" then we find that a, = —»forn=0.
= n!
Then if u, be n - th term of the series we get
ty oy = a, (x—2)"
u,=a, (x—=2)""1, forn>1.
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\
So.. [t | A (x—z)‘= Yol x-2|
Mn a, a,
1 1
=‘—(n—l)!|x—2|=—|x—2|
n! n
Then Lim |“2*L| exists and is equal to
n—> ® u}’l
.1
Lim — {|x-2] =0-]x-2
n—won

=0<1. for all x.
So the given power series is convergent for all real values of x and hence the radius of
convergence of the power series is .

x2n

[ee]
Example — 2 : Find the radius of convergence of the power series Z D" - Y
n=0

[B.PU.T 2004

2 4 n
Solution : The power series is - +&x2" o
2 27 2"
(_l)n . x2n
Let u, =2—n, n=0,1,2,.....
( 1)n+1 . x2(n+1)
Thenu, , = T
Upsr| |-1-x*|_1 2
5o n+ _ ‘ X ~x
u, 2 2
u 1
Lim [ = —x?
n— o u}’l 2

. oo o1 1
Then the given power series is convergent if Exz < 1 and non-convergent for Exz > 1.

| 9
Nowax <1 S xs <2

& h< 2

So the required radius of convergence is /2 .
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el xzm
Example — 3 : Find the radius of convergence of Z:,) ml
=
0 x2m
Solution : z_,
m
m=0 :
o xzn x2n—2
ereanﬂ— n/ an_ (n_l)/
2n 2
. |a . lx n—1)/ X
. lim|—"H = lim X(z 2) = limf—| =9 <1
nool @, | onowl nl o x | n

we know the radius of convergence R" = 0

1
:}R: *:CD
R

Hence the radius of convergence R = oo.

- 1 2m
Example — 4: Find the radius of convergence of 23_,”(4" - 3)
m=0

o0 1 m
Solution : zs_m(x _3)2
m=0

1 n
Herea = 3—n(x -3y’
2n-2

an: 3/’171( _3)

. .1 2 3 1 o 1 2

1 w4l liml— -3 2 :_‘ _

o a, nl—{g3n (x=3) ><(36_3)2”*2 - ,111_’?303(x 3) 3(x 3)
we know for convergency lim <]

n—>0 an

= %‘(x—?ﬂ <l = ‘(x—3)2‘<3

2
= ‘(’“3) ‘< V3 23-3<x<3+43
Hence the radius of convergence is R = \/5 .(Ans)
00 x2m+1

Example -5 : Find the radius of convergence of ( 2m+ 1).,

=0
0 _1 m
Solution : z(k”z X

m=0

(_l)n. 2n (_1)”71_ 2n-2

kl’t n k”71

Here a,,, =
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[

n+1|

a - 1
oo . . 2
s Aim lim|=——.x ——— _ liml—x = _‘xz‘
n—>w| a, n—>oo‘ k (_1) X2 ‘ n—>0 k
know fi lim| L
we know for convergency ‘7 a, <

:%‘xz‘q :>‘x2‘<k :>‘x2‘<k :>‘x2‘< Ik

Hence the radius of convergence is R = ﬂ/|k| .

c 2 " 2m
Example — 6 : Find the radius of convergence of z [_) X

3
C 2 " m
Solution : Z(g) X

m=0

2 ! 2n
Hereanﬂ= E -X

_ (%)”1 x2n71
a, 3 .

an+1

m=0

(2)’1 2n
5 X
(i)nl -x2n72

li A1
we know for convergency, tm
n—ol g

o lim = lim

12 5
| | = liml—x
Nn—>00] an n—>00]

n—>0)

<1 :%‘xz‘q :%‘x2‘<1

n

:%‘x2‘<§:>|x|< é:}— §<X< E

3 2 V2 \ 2 V2
. . 3

Hence the radius of convergence is R = 3

d
Example — 7 : Find a power series solution of the differential equatio Ey =

[B.PU.T. 2005, B.PU.T. 2007

d
Solution : The given equation is d—y +y =0 ... (D
X

Here x = 0 is an ordinary point of the differential equation. So we seek a solution of form.
y=a0+a1x+a2x2+ ..... +a,x"+... .. (2)
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dy 1
Then I =a,+2a,x+...+tna,x"" " +.. .. (3)
Substituting (2) and (3) in (1) we get
(ag+ay)+ (a; +2a,) x + (a, +3ay) X2+ [a,+(n+1)a, ]xX"+ ... =0 .. 4

In order that (2) may be a formal solution of sl), (4) must be an identity in x and so the
coefficients of successive power of x can be equated to zero. Thus we get

ap+a, =0
a, +2a, =0
a, +3a; =0
a,+(n+1)a, ; =0

From the above relations we get

4 4o
ap = ap =75 = 5 =(-1)? o
| | ;1
@ =30 =—2—3a0,=(—l) EEYEL
| s 1
=—ay,=——ay=(-1)""—aqa
“ 45 =24 % =D g%

.Xz .X3
or y= a 1—X+?!—§+ ........ (5)

We have shown formally that (5) satisfies the given differential equation where the constant

a, can be taken arbitrarily. So the required power series solution is given by (5).
2 3

Now we know that the series 1—x + ETRET) F e is convergent for all values of x and it
represents the exponential function e™.

Hence the required solution is y = a, e™, where q, is arbitrary constant.
Note : The above solution can be easily obtained by the method of separation of variables.
Example — 8 : Find a power series solution of y”’+y = 0, given thaty (0) = 0. [B.PU.T. 2012

Solution : Here x = 0 is an ordinary point of the given differential equation. For a power series
solution we assume y = a, +a; x + a, i e (D
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. Q)

d
Then L4 =a1+2a2x+3a3x2+ ........

2
and #=2a2+3~2a3x+4~3a4x2 ...... .(3)
Substituting (2) and (3) in the given differential equation we get
(2ay +32a3x+43ay, ¥+ )+ (agta,x+a, ¥+..)=0
or, (2a,+ay)+(32ay+ta;)x+(43 a4+a2)x2+ ...... =0 e (4)
In order that (1) may be a formal solution of (1), (4) must be an identity in x and so the
coefficients of the successive powers of x can be equated to zero. Thus we get
2a, + a, =0
32a3+a; =0
43a,+ta, =0

(] |
From above we get a, = — BT,
1 , 1
= —a, =(-1)"——=aqy,
e RETL
1 , 1
- g, =(=]?-
a5 = 5 s =g

and so on.
[Here we observe that a,, a,, ag, ......
expresed in terms of a,].
a a a a
0,2 _%4.3,% 4, 9.5

Hence y= a +alx _E X Ié Iﬂ_ Ié

2 xt XX
or, y:ao I_E—'—E_ ........ +aq X—E'l'E— ........ (5)
where the values of the constants a,, a; can be taken arbitrarily. We have shown formally
that (5) satisfies the given differential equation. Now it can be shown that the power series

and X_E |§

are convergent for all values of x.
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/
. a1
For the first series a, = 1, a,, = (-1)" - E, ay, =0 forn=>1.
n
a x2n+2
Now Lim 2n+2—2n
n—» 0 azn X

_1\2n+2
- Lirn|( D . |27 x°

= n—)oo| (—D?"  [2n+2

I
|2n+2) 2n+1)|

=(0<1, for all x.

2 4
X X

So the series 1 ——+-——.......... is convergent for all x. Similarly it can be shown that the

2[4

— Lim
n —» oo

3 5

E+E ..........

So (5) gives the power series solution of the given differential equation.
Now it is given that y (0) = 0 Then from (5) we get 0 = a,,.
So the required power series solution is

et

where (a, is arbitrary constant) valid for all x.
Note : Here we note that

series x — is convergent for all x.

NEEE
Ié Ié ------------ and
2 4
X X

represent respectively sin x and cos x.

So the required solution in the closed form is given by y = @, sin x which can be obtained
easily by the method of solving ordinary linear differential equations with constant co-efficients.
Example — 5 : Find a power series solution in powers of x of the following differential equation

(1-x%)y”=2xy. [B.PU.T. 2012,2011
Solution : The co-efficient of ' is 1 — x* which is a polynomial in x and 1 — x> # 0 for x = 0. So
x = 0 is an ordinary point of the given differential equation. Then for a power series
solution of the given differential equation we assume.

— 2 n
y=agtaxta,x-+..+ta,x"+.. e (1)



Power Series

E
,_ Ay -1

Then y' = =a,t2a,x+..+tna, X" +... ...(Q2)
r— dzy _ n—2

and )''= 72 =2a,+32ay;x+ ... tnm—-1)a,x""“+ .. ... 3)

Substituting (1), (2), (3) in the given differential equation.

42
(l—xz)—d 5—2?0’ =0, we get
x

[2a, +32a;x+...tn(n-1)a, X241 =xH)—2x (agta;x+a, ¥+..)=0
or, 2a,+32ayx+..+n(n-1) anx”’z + ...

—2a, x2—32 as ¥ o.—nmn-1 a, x" AL

—(2a0x+2a1x2+2a2x3+ ..... =0

o0

or, (1-x7) Zn (n—1)a,x"? —2x Z a,x" =0
n=2

n=0
or, Zn (n—1)a,x"* - Z nn-1a,x" -2 Z a, x" =g . (4)
n=2 n=2 n=0
Now (4) being an identity in x, successive powers of x are equated to zero and we get
2a, =0
32a3-2a,=0

43 a4 _21 az _2 alz O
nn-1a,-(n-2)(n-3)a, ,-2a, ;=0,n=3.
[The last relation is obtained equating the coefficient of x” =2 (n > 3) to zero]
From the above relations we get

2 2
a2:0, a3: an’ a4: 4_-3a
S4a5-32a3-2a,=0
ie, S4as =32ay( . a,=0)
32 32 2
La=22 g
54 54 32
and so on.

1»

or, as= 0

So the formal solution is
2 4 32 2 5

1
—g + + — 34— + —— = ayx” +.......
y=ayTapx 3 g X 43 apx 54 32 0
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l+=—x"+—x"+.oeos, X+—X +......
5-4 43
are convergent within the respective intervals of convergenee say (-R,, R,).and (-R,, R,).
So ifmin= {R, R,} =R min {R|,R,}

the required power series solution is

valid for |x| <R.
. Ay dy . .
Example — 6 : Solve the equation (1—x )F - xd— +4y in power series, near the ordinary
X X
point x = 0.
Solution : Let y= Y a,x" o (1)
n=0

be solution of the given differential equation.

The il—‘; = Z:ln a,x""! e (2)
2 0

d—f = Y n(n-la, x"? (3

dx n=2

Substituting (1), (2), (3) in the given differential equation we get

(1-x%) Y n(n-la, x"fz—xZnan X4y g, 3" =0
n=2 n=1

o0 o0

or, Zn(n—l)anxnfz— Zn(n—l)anx"—Znanx"+4Zanx" =0 e (4)
n=1 n=0

n=2 n=2
Now (4) being an identity in x, successive powers of x can be equated to zero.
Equating the coefficient of x"~2 (n > 2) to zero we find that
nn-1a,-(n-2)(n-3)a, ,—(n-2)a, ,+4a, ,=0,forn=2.
o,n(n—-1)a,-[(n-2)(n-3)+(n-2)-4]a, ,=0
or, n(n— 1)an—(n2—5n+6+n—2—4)an72=0
or,n(n—1)a, - (n*— 4n) a, ,=0
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or, m—1)a,-(n—4)a, ,=0forn=2.

-4
or, a, = " a, ,,forn=2.
2 1
SO, az _Ta()a a3 = _Eala
1, _1(1
a; =0, a5—4a3—4 _E

and so on.
So the formal solution is

2) e ]
y=apta;x+ i aox—2

alx +6x4 +a, Z (——j

6 aé.l.(
+ 0x° + s 4

or, y= ay(1-2x") + ¢ {x—%x -

3

1
4

It can be shown that the power series

1

is convergent for [x|<| and non-convergent fo
Hence the required series solution is

1 3

y=ay(1-22%)+aq, (x——x -

2
valid for |x|<|.

1
8

XS—

5

) 531 ( 1)
+0x° +a === ——
2 8 6 4 2

1 s 3115 5311, }
— X —— ==X —— === X —......
27 642 86 42
3L lo
6 4 2
or [x>].
Lo 2o
16~ 128

Exercise — 7.1

22 X2 33 3

2! 3!

(a) x+

What is the radius of convergence of the power series Z

n

R) 7
Z Gy R

[B.PU.T. - 2003

Find the radius of convergence of the power series.
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0 n!
(b) Zanx" where a; =0, a; = 1 and a, = (2), nz2
n=0 ( )
0 (_1)n+l " 32 2 3 3
— L (x-2) x° 3x
(C) nZ::O(n+1)(n+2) (d) 1+3x+ o + 3 Fonenns
3232 3% i ﬂ (x+ 1)n+1
(6) 1+3X+T!+T+ ....... (f) ~ n+l
1 1-3 24 135 3
1+ +— +oeen
®) 2x 24 246

d’ d
Solve the equation d_; +3x d_i +3y=0 by power series method.
x

d d
Show that x =1 is a regular singularity of the equation (x ~1)? d—;}+2x (x-1) ay +3
X

: . . 3 dly 4dy
(x+ 1) y=0; butx = 0 is not a regular singularity of the equation x F+x e +y=0.
X X
. d? y dy . . . . .
Show that the equation 2? + Sxd— + 2y =0 has no singular point while x =0 is an ordinary
X X

d’y d
point of the equation # -X d_y +2y=0,

Locate and classify the singular points of the equations :

(a) x(x 1)——3(x 1) +5xy 0
() x*(x* - ) +33Zy+4y 0

© (3x+l)xdy (x+1) +3y 0
)C

2 d%y
(d) x"—5 +ysinx=0.
dx
. d’y  ady o L
Solve the equation 7 +x I 4xy =0 in series near the point x = o
X

d2
Solve d_;} +(x—=2) y=0 by power series method about x = 2.
X
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I1.

10.

I1.

Hint: Assume y = »_ a, (x—2)"
n=0
2
Solve the equation x (1—x) d— -3—= b
dx® dx
Apply Frobenius method to solve (x + 1) ' — (x + 2) y = 0 about regular singularity —1.

+2y =0 about the regular singularity x = 1.

d
[x = a is called a regular singularity of Ey +P (x) y=0if (x — a) P (x) is analytic at x = a.

+2
Here P (x) = _x_+1. Then (x + 1) P (x) = —(x + 2) which is analytic at x =—1. So -l is a
x
regular singularity of (x + 1) —(x +2) y = 0]

d
Solve d—i=—2xy by power series method. [B.PU.T. - 2004
Answers
1 1 1
1 2. (@)~ ;D451 550 55015
e 3 2
o (_3\k 2k k. 2kl
y:aon(zx +1X+Z(3)2 k! x '
o) 2" k! P 2k +1)!

(a) 1 is aregular singularity, 0 is an irregular singularity and no other singularity ;
(b) 0,2, -2 are regular singularities and no other singularity.

1
(c) O, 3 are regular singularities and no other singularity ;

(d) x=0is a regular singularity and no other singularity ;

) =4y | 4)
= 1 _
7 a°_+nzl3” nGn—1) Gn — 4)} 1(x+4x

0 (_l)n (x_2)3n 0 (_l)n(x_2)3n+l
= a1 -2
I +213”nv258 ...... (n —1)}”11 {(x H; 3" n! 4-7-10.....(3n+1)

y=a [(x—1)72+4(x—1)71]+a2 [1+§(x—1)+%(x—1)2:l;

+1)? +1)°
y=c(x+1) {1 +(x+1)+ (x Y ) +(x ) +oe } where c is arbitrary constant.

3!

X . .
y= "% (1 —x7+ Bl + o J > where g, is arbitrary constant.



