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6.1 : Introduction

Linear differential equations are of paramount importance in the description of physical
phenomena. Many natural processes appear as higher-order linear differential equations, most
often as second-order equations. Second-order linear differential equations arise in many areas of
physics, electric circuits and vibrations etc.

A linear ordinary differential equation of order n has the form.
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where a0 ( 0), a1, a2, ............, an–1, an and X are functions of x only.

If X = 0, then equation (1) is called homogeneous ; otherwise the equation (1) is
nonhomogeneous.

If a0, a1, a2 ..........., an–1 , an are constants, the equation (1) is called linear differential
equation of order n with constant co-efficients.

Note : When n = 2, the equation (1) becomes a second order linear differential equation and it is of
the form
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where a0 (0), a1, a2 and X are functions of x only.

6.2 : Linear Differential Equations with Constant Co-efficients

A linear ordinary differential equation of order n has the form.
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If X = 0, then equation (1) is called homogeneous ; otherwise the equation (1) is
nonhomogeneous.

If a0, a1, a2 ..........., an–1 , an are constants, the equation (1) is called linear differential equation
of order n with constant co-efficients.

Note : When n = 2, the equation (1) becomes a second order linear differential equation and it is of the
form
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where a0 (0), a1, a2 and X are functions of x only.

A linear ordinary differential equation of order n with constant co-efficients has the form.
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where a1, a2 ............ , an are real constants and X is a function of x only.

The concept of general solution of the equation (1) requires the idea of linear dependence and
linear independence of functions ; so these ideas are introduced first.

Definition :

A set of n real valued functions y1, y2 .... , yn are linearly dependent. (L.D.) on the interval I
(where they are defined) if there exists real constants c1, c2, .........., cn not all zero such that

c1y1 (x) + c2 y2 (x) + ...............+ cn yn (x) = 0 for all x in I.

These functions are said to be linearly independent (L.I.) on I if the relation

c1y1 + c2y2 + ................... + cnyn = 0 for all xI

implies c1 = c2 = ............... = cn = 0.

We may test the linear independence or dependence of these functions y1, y2, ..............., yn by an
elegant tool which is Wronskian determinant.

Definition :

If the n functions y1, y2, ..... , yn are each (n – 1) times differentiable with respect to the independent
variable x then the Wronskian of n functions is denoted by W (y1, y2, ......, yn) and is defined by

W (y1, y2, .....,yn) = 
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where primes denotes the differentiation with respect to x. 
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An Example :

Let y1 = sin x and y2 = cos x where 0  x  2. Here we see that :

c1 sin x + c2 cos x = 0 for all x  [0, 2] (c1, c2 are real constants)
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implies  c1·0 + c2·1= 0 (taking x = 0)

and c1 · 1 + c2 · 0 = 0  taking =
2

x
 

 
 

from which we getc1 = 0, c2 = 0.

Hence the set of functions {sin x, cos x} is linearly independent.

Here we observe that :

W (sin x, cos x) = 
sin cos

cos – sin

x x

x x
 = –1  0 for all x  [0, 2]

Now we state the theorem for linear independence.

Theorem : The functions y1, y2, ......., yn will be linearly independent if and only if Wronskian
W (y1, y2, ....., yn)  0 in the corresponding domain.(We omit the proof of the theorem)

In order to solve the equation of the form (1), we first find the general solution of the equation
formed by setting X = 0 in the equation (1).
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To find the general solution of (2), we first find n linearly independent functions y1, y2, ...., yn,
that satisfy it. Now we state the following theorem :

Theorem : Let y1, y2, ....... yn be n linearly independent solutions of (1) on an interval I. Every solution
of (1) can be written uniquely as :

yc (x) = c1y1 (x) + c2 y2 (x) + ......... + cn yn (x) ...... (3)

where c1, c2, ......, cn are real constants (we omit proof of the theorem).

Since c1, c2, ......, cn are n arbitrary constants and the equation (2) is of order n, it follows that the
general solution of the equation (2) is of the form (3).

Note : The function yc (x) is called the complementary function (C.F.) of the equatiuon
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where a1, a2,........,an are real constants and X is a function of x.

Now we shall discuss the method of obtaining the general solution of the linear differential
equation of order two. We consider the equation.

2

2

d y dy
a by

dxdx
  = 0 ... (4)

In previous chapter we have seen that the solution of first order linear equation of the form

dy
my

dx
 = 0 is y = emx + c (c is an arbitrary constant).

Therefore we try to find a solution [of (4)] of the form y =- emx, where m is a constant. Substituting
y = emx in (4), we get (m2 + am + b) emx = 0.
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Since emx  0, we obtain

m2 + am + b = 0 ... (5)

This is a quadratic equation in m. The equation (5) is called the auxiliary equation of (4). The
auxiliary equation (5) has two roots m1, m2 (say). We have the three main cases as follows:

(i) Two roots are real and distinct (m1   m2) : Let the distinct roots of (5) be m1, m2.

Then 1 2andm x m xe e  are two solutions of (4). They are linearly independent, since.

,1 2W ( )m x m xe e = 
1 2

1 2
1 2

m x m x

m x m x

e e

m e m e

            = ( )1 2
2 1( – ) m m xm m e 

 0 for all real values of x

Hence the general solution of (4) is

y = 1 2
1 2

m x mc e c e x

where c1 and c2 are arbitrary constants.

Note : If the distinct real numbers m1, m2, ........,mn are the roots of the auxiliary equation corresponding
to the homogeneous linear differential equation of order n, then the general solution of the equation

is 1 2
1 2= .......... m xm x m x n

ny c e c e c e   .

where c1, c2, ...... ,cn are arbitrary constants.

(ii) Two roots are real and equal (m1 = m2) : If ,  be the repeated roots of (5), then

 +  = –a, i.e.  = 
2

a
 .

Here ex is a solution of (4). Then the solution of (4) can be obtained by setting y = vex (v is a
function of x). We get

y = vex, 
dy

dx
 =vex + 

dv

dx
ex, 

2

2

d y

dx
 = eax 

2
2

2
2

d v dv
v

dxdx

 
   

 
.

Then from (3), we get.

          
2

2
2

2
x ax xdvd v dv

e e a bvevv
dxdxdx

            
 = 0

or, 

2
2

2
(2 ) ( )vd v dv

a a b
dxdx

       = 0

or, 

2

2

d v

dx
 = 0    [ 2 + a = 0 and 2 + a + b = 0, since is a root of (5)]

On integration, we have v = c1 + c2x
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where c1 and c2 are real constants.

So, if we take c1 = 0, c2 = 1, we find that y = x ex is a second solution of (3).

Now,W(ex, xex) = 
2= 0

x x
x

x x x

e xe
e

ae e xe

 


  


 

So, {eax, xeax} is a set of linearly independent solutions of (3).

Hence the general solution of (4) is

y = (c1 + c2 x) ex.

where c1 and c2 are arbitrary constants.

Note : If the order of the equation be three and if the corresponding auxiliary equation has a real double root,
say, 1 and a simple real root 2 then the general solution will be

y = (c1 + c2x) 1 2
3

x xe c e 

If the roots of the auxiliary equation in this case are all real and equal, say,  then the corresponding
general solution will by

y = (c1 + c2x + c3x2) ex.

where c1, c2, c3 are arbitrary constants.

Similarly we can obtained the general solution of the linear differential equation of order
(>, 4) when two or more roots of the auxiliary equation are real and equal and the remaining
roots (if any) are real and distincit.

CASE (iii) Two roots are imaginary :

If one of the roots of (4) is imaginary, say  + i [,  (0)  are real], then its conjugate
 – i is a also a root of (4). Then

y = c1e( + i) x + c2e( – i) x

is a formal solution of (3) where c1 and c2 are arbitrary complex constants. Now,

c1 e( + i) x + c2e( – i) x
 = ex  [(c

1
 + c

2
) cos x + (ic

1
 + ic

2
) sin x]

For arbitrary real constants A, B we can find c1, c2 such that :

c1 + c2 = A and i (c1 – c2) = B

which yields c1 = 
A– B

2

i
 and c2 = 

A B

2

i

Then y = ex [A cos x + B sin x] is a solution of (3) where A and B are real constants and it can
be shown that ex cos x, ex sin x are linearly independent solution of (4). So, in this case the
general solution is given by

y = ex (A cos x + B sin x)

where A and B are arbitrary constants.

Note : If for a linear differential equation of order (<, 4) with constant co-efficients, the conjugate
imaginary roots + i,  – i of the corresponding auxiliary equation are each of multiplicity k,
then the corresponding part of the general solution will be of the form

ex [(c1 + c2 x + .............. + ck x
k –1) cos  x + (d1 + d2x + ........ + dkx

k–1) sin x]
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For example, if the roots of the auxiliary equation of a fourth order homogeneous linear
differential equation with constant co-efficients be 1 + i, 1 – i, 1 + i, 1 – i then the general
solution will by

y = ex [(c1 + c2x) cos x + (d1 + d2x) sin x]

We now give several examples.

Rules for finding the complementary functions
Working Rule to solve the equation :

d y

dx
k

d y

dx
k y X

n

n

n

n n  


1

1

1
.........

of which the equation is in symbolic form

Dny + k
1
Dn – 1y + ........ + k

n
y = X

(Dn + k
1
Dn – 1 + ....... + k

n
) y = X

f (D) y = X

Where f (D) = (Dn + k
1
Dn – 1+.......k

n
)

Step –I : To find the complementary function

(i) Write the A.E. f (D) y = 0 and solve it. Let it’s root be D = m
1
, m

2
, ...........m

n
.

Write the complete solution
Roots of A.E.

(1) All the roots m
1
, m

2
, m

3
 ............m

n 
are real & different.

(2) All the roots m
1
, m

2
, m

3
........m

n
 are real & m

1
= m

2.

(3) All the roots m
1
, m

2
, m

3
 .....are real & m

1
= m

2
= m

3
.

(4) Two pairs of the roots are complex i.e. m
1
=  + i, m

2
=  – i & all other roots are real

& different.
Complete soln :

(i) y = c
1 e c e c e c em x m x m x

n
m xn1 2 3

2 3   .........

(ii) y = (c
1
x + c

2
) e c e c em x m x

n
m xn1 3

3  .........

(iii) y = (c
1
x2 + c

2
x + c

3
) e c e c em x m x

n
m xn1 4

4  .........

(iv) y = e c x c x c e c ex m x
n

m xn  ( cos sin ) .......1 2 3
3   

(v) y = e c x c x c x c x c e c ex m x
n

m xn  [( )cos ( )sin ] .........1 2 3 4 5
5     

Illustrative Examples

Example – 1 : Find the general solution of

   3
d y

dx
2

dy

dx
8y 0

2

2
  

Solution : Given 
2

2
3 2 8

d y dy
y

dxdx
   .... (1)

let y = emx be a trial solution of (1).
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To find C. F.

Then the auxiliary equation of (1) is

3m2 + 2m – 8= 0

i.e., (3m – 4) (m + 2) = 0

i.e., m = 
4

, 2
3



The general solution of (1) is therefore

y = 

4
23

1 2

x
xc e c e ,

where c1 and c2 are arbitrary constants.

Example – 2 : Find the general solution of 
d y

dx
3

d y

dx
4y 0

3

3

2

2
  

Solution : The above equation can be symbolically wirtten as D3y – 3D2y + 4y = 0

To find C. F.

The auxiliary equation of the given differential equation is

m3 – 3m2 + 4 = 0

i.e., (m + 1) (m – 2)2 = 0

i.e., m = –1, 2, 2

Here a root (i.e. 2) is a double root of the auxiliary equation. Thus the general solution of the
given differential equation can be written as.

y = c1e–x + (c2 + c3 x) e2x

where c1, c2, c3 are arbitrary constants.

Example – 3: Find the general solution of 
d y

dx
8

d y

dx
1 y 0

4

4

2

2
  6

Solution : To find C. F.

The auxiliary equation of the given differential equation is

m4 + 8m2 + 16 = 0

i.e., (m2 + 4)2 = 0

i.e., m =  2i,  2i.

i.e., the roots of the auxiliary equation are  2i, –2i, 2i –2i

Since each paris of conjugate imaginary roots is double, the general solution of the given
differential equation is y = (c1 + c2x) cos 2x + (c3 + c4x) sin 2x where c1, c2, c3, c4 are arbitrary
constants.

Example – 4 : Solve the initial value problem, 
d x

dt
5

dx

dt
6x 0

2

2
   , given that x (0) = 0, 

dx

dt
0b g  15 .

Solution : We have, (D2 + 5D + 6)x = 0, where D
d

dt


A.E. is m2 + 5m + 6 or (m +2) ( m +3) = 0  m = –2, –3

x = x (t) = c
l
e–2t + c

2
 e– 3t ... (1)
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This is the general soultion of the given equation.

Now, consider x(0) = 0

(1) becomes, x(0) = c
1
 1 + c

2
 1

ie., c
1
 + c

2
 = 0 ... (2)

Also we have from (1),

dx

dt
c e c et t   2 31

2
2

3

Applying the condition 
dx

dt
0 15b g   we obtain,

–2c
1
 –3c

2
 = 15 ... (3)

Solving (2) and (3) we get c
1
 = 15, c

2
 = –15

Thus x t e et tb g d i  15 2 3
 is the  particular solution.

We have dealt with the homogeneous linear equation with constant co-efficients and its general
solution. Now we consider the nonhomogeneous linear equation (1) with constant co-efficients
of order n. The following theorem characterizes the solution of the equation (1), in terms of a
general solution of the corresponding homogeneous equation (2).

Example – 5 : Find the solution of the differential equation 
2

2

d y

dt
 + 4y = 0 given that

       y (0) = 1, y 
 
 
 4


=1.                 [B.P.U.T., June 2005

Solution :  The given equation is

2

2
4

d y
y

dt
 = 0 .... (1)

Let y = emt be a trial solution of (1).

Then from (1) we get, (m2 + 4) emt = 0

Since emt 0, we have the auxiliary equation of (1) m2 + 4 = 0 which gives m =  2i.

So, the general solution of (1) is

y = c1 cos 2t + c2 sin 2t .... (2)

Given conditions are  y (0) = 1, y 
4

 
 
 

 = 1

Using given conditions we get from (2),

c1 = 1 and c2 = 1.

 The required solution of (1) is

y = cos 2t + sin 2t.
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Example – 6 :  Solve  
d y

dx

d y

dx
1 y 0

4

4

2

2
8 6  

Solution : 
d y

dx

d y

dx
y 0

4

4

2

2
8 16  

The above equation can be symbolically written as

 D4y + 8D2y + 16y = 0

 (D4+8D2+16) y = 0

Now A.E. = 0, D4 + 8D2 + 16 = 0

 D4 + 4D2 + 4D2 +16 = 0

 D2 (D2 + 4) + 4 (D2 + 4) = 0   (D2 + 4)  4(D2 + 4) = 0

 D2 + 4 = 0 or D2 + 4 = 0   D2 = – 4, or D2  = – 4

 D2 = 4i2 or D2 = 4i2    D = 2i or D = 2i

 So the required solution is

y = e0x {(c
1 
+ c

2
x) cos 2x + (c

3 
+ c

4
x) sin 2x}

= (c
1 
+ c

2
x) cos 2x + (c

3 
+ c

4
x) sin 2x

Theorem : A general solution y (x) of the nonhomogeneous equation (1) is the sum of a general solution
yc (x) of (2) (called the complementary function for (1)) and a particular solution yp (x) of
(1), where

yc (x) = c1 y1 (x) + c2y2 (x) + ...........+ cn yn (x) where y1, y2 ........, yn

are linearly independent solutions of (2).

Hence  y (x) = yc (x) + yp (x)

Remark : yp (x) is also called a particular integral of (1).

We rewrite the equation (1) as

f (D) y = X .... (1)

Where  f (D) Dn + a1Dn –1 + ...... + an – 1D + an (a1, a2, .... , an are constants) and D stands for

d

dx

Here f (D) is a linear operation, i.e.,

f (D) [r1 (x) + r2 (x)] = f (D) [r1 (x)] + f(D) [r2 (x)]

and f (D) [kr (x)] = kf (D) [r (x)],

where r1, r2, r are functions of x and k is a real constant, f (D) is a polynomial in D with constant
co-efficients and it behaves just an ordinary algebraic polynomial.

We now present an important method, known as the operator method, for finding particular

integral of (1). Before finding particular integrals of (1) we define the operator inverse to f (D)

which is denoted by 
1

(D)f
 or [f (D)]–1. It is defined to be an operator such that
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1
X( )

(D)
x

f =  (x)

if and only if [f (D)]  (x) = X (x)

Now we will show that 
1

X
(D)f

 is a particular integral of the equation (1).

Proof : Substituting 
1

X
(D)f

 for y in the equation (1), we find that

f (D) y = f (D) 
1

X
(D)f

 = X

We will find the particular integrals of (1) when X has the following forms :

(i) X = xm (m is non-negative integer) or any polynomial in x.

(ii) X = eax, where a is a constant.

(iii) X = sin (ax + b) or cos (ax + b), where a and b are constants.

(iv) X = eax v, where v is a function of x.

(i) To evaluate 
1

,
(D)

mx
f

 we can write f (D) as [f (D)]–1 and we can expand it in ascending

powers of D using Binomial theorem.

The terms of the expansion so obtained, each term operates on xm and the final result will be a
particular integral of the equation (1) corresponding to xm. It is obvious that no terms of the
expansion beyond the mth power of D need to retained, since the result of their operation on xm

will be zero (i.e. Dnxm = 0 when n > m)

The same procedure will have to adopted when X is a polynomial in x of degree m.

We illustrate the above procedure by the following example :

6.3 :  Solution of Differential Equation  f(D)y = X or PI

We have already discuss from the previous Chapter,  that the solution of the equation f(D) y
= X, consists of two parts, namely complementary function and particular integral. The
complementary function for this equation is same as the complete solution of f(D) = 0. The
methods to find complementary functions have already been dicussed. We shall discuss the
methods of finding the particular Integrals.

Particular Integral

The particular integral of the differential equation f(D)y = X is defind as y  = 
1

f ( )D
X .......(1)

Where in general ‘X’ is a function of x, It may of course, be a const. The symbol 
1

f ( )D
X ,

is defined as a function of x, which when separated upon by f(D), gives X, in symbolically

f
f

( )
( )

D
D

X X
1L
NM

O
QP
 .
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Thus the function 
1

f ( )D
X satisfies the equation (1) and called particular integral.

As already pointed, the polynomial f(D), can be subjected to algebraic operations, such as
factorisation, resolutions, in partial fractions and expansions by binomial theorem etc. The
following results are quite useful to find particular integrals.

Results :

(1) If X is a function of x or a const, then 
1

D
X Xdx z

Solution : Let y = 
1

D
X  operating both sides D

Dy = D 
1

D
X
F
HG
I
KJ = X

or
dy

dx
= X, Intergrating both sides w.r.t. x  y = xdx, hence the result.

(II) If X is a function of x or a const, then 
1

(D )
X X


 zm

e e dxmx mx

Solution : Let 
1

(D m)
X y

(D – m)y = (D – m) 
1

(D m)
X



F
HG

I
KJ = X

or
dy

dx
my X  , Which is linear

I.F. = e e
mdx mx z 

Hence soln is ye Xe dxmx mx  z
y = e Xe dxmx mxz      

1

D m
X e Xe dxmx mx


 z

This formula  enables us to evaluate the particular integral 
1

f ( )D
X ,

where f(D) = (D – m
1
) (D – m

2
) .........(D – m

n
)


1

f ( )D
X = 

1

1 2( )( ).......( )D m D m D m
X

n  

Resolving R.H.S. into partial fractions

1 1

1

2

2f ( )
.......

D
X

A

D m

A

D m

A

D m
Xn

n










F
HG

I
KJ

= A e xe A e Xe A e Xe dxm x m x m x m xdx
n

m x m xn n
1 2

1 1 2 2   z zz .......
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Particular Integrals in some special cases :

Let us consider the differential equation

(Dn + P
1
Dn–1 + P

2
Dn–2 + ......... + P

n
) y = X

where all P
i
’s are constant.

The above equation can be written as f(D) y = X

particular integral = 
1

f ( )D
X

Case – 1 :

When X = eax

D(eax) = aeax

D2 (eax) = a2eax

................

Dn(eax) = aneax ...........(i)

Multiplying  in (i) by P
n
, P

n–1
.... P

1
 and respectively and adding,

(Dn + P
1
Dn–1 + ..... P

n–1
D+ P

n
)eax = (a

n
 + P

1
 an–1 +..... P

n–1
a + P

n
)eax

 f (D) eax = f(a)eax

Operating both sides of equation (ii) by 
1

f ( )D

1 1

f
f

f
f

( )
( )

( )
( )

D
D e

D
a eax ax

or  
e

a D
e

ax
ax

f f( ) ( )


1

Which gives the particular integral of eax

In case X = K(a const) then

1 1 0.

f f f( ) ( ) ( )
,

D
k k

D
e

k

D
x   provided f(0) ± 0

Case of Failure :  If f(a) = 0, the above method fails and we proceed as under.

Since f(a) = 0

D = a, is a root of f(D) = 0........(i)

(D – a) is a factor of f(D), Suppose f(D) = (D – a) f (D). where f (a)  0

Then 
1 1 1 1 1

f f f( )
.

( )
.

( )D
e

D a D
e

D a a
eax ax ax

 


 

= 
1 1 1

f f 



z( )

.
( ) ( )

. .
a D a

e
a

e e e dxax ax ax ax

= 
1 1

f f


z( )
.

( )a
e dx x

a
eax ax
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i.e. 
1 1

2
f f( ) ( )

............( )
D

e x
a

eax ax


 (f  (a)  0)





f f f

f f f

    

   

L
NM

O
QP

( ) ( ) ( ) . ( )

( ) ( ) ( )

D D a D D

a O a a

1

If f (a) = 0, then applying (2) again

we get 
1 12

f f( ) ( )D
e x

a
eax ax

 
 provided f (a)  0 .........(3)

and so on,

In general if D = a, is a repeated root of f(D) = 0, say (r + 1) times,

we have 
1

f f( )

.

( )D
e

x e

a
ax

r ax

r
 f r(a)  0

Rule – 1 :

To find the P.I. 
1

f ( )D
eax

, replace D by a, provided f (a)  0, In  case f(a) = 0 multiply the

nuemerator by x and differentiate the denominator w.r.t. D and apply the above rule, provided
f (a)  0 and so on.

Example – 1 :  Find the particular integral in the solution of (D2 + 16)y = e–4x.

Solution :  P.I. 


F
HG

I
KJ

1

162

4

D
e x


 

e x4

2
4 16b g  (Replacing D by – 4) 

e x4

32

Example – 2 :  Solve (D – 2)2y = e2x.
Solution : The auxiliary equation is (D – 2)2 = 0. Hence D = 2, 2

 C.F. = e2x(c
1
x + c

2
)

P.I. 



1

2 22

2
2 2

D
e

x ex
x

b g !

 y = C.F. + P.I. = e2x(c
1
x + c

2
) 

x e x2 2

2
.

Example – 3 :  Solve (D2 – 4)y = e2x + e–4x.

Solution : The auxiliary equation is D2 – 4 = 0.

Hence D = 2, –2.

 C.F. = c
1
e2x + c

2
e–2x
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 P.I. 


F
HG

I
KJ  1

42
2 4

D
e ex xd i   

F
HG

I
KJ 



F
HG

I
KJ

1

4

1

42
2

2
4

D
e

D
ex x


 

F
HG

I
KJ 



1

2 2 4 4

2
4

2D D
e

ex
x

b gb g  


F
HG
I
KJ   


1

4

1

2 12

1

4

1

12
2

4
2 4

D
e

e
xe ex

x
x x

.

The solution is y = C.F. + P.I.

     y c e c e xe ex x x x
1

2
2

2 2 41

4

1

12
.

Case – II :
When X = sin (ax + b) or cos (ax + b)

D sin (ax + b) = a cos (ax + b)

D2 sin (ax + b) = – a2 sin (ax + b)

D3 sin (ax + b) = –a3 cos (ax + b)

D4 sin (ax + b) = (–a2)2 sin (ax + b)

.........................................................

  (D2)n  sin (ax + b) = (–a2)n sin (ax + b)

  f(D2) sin (ax + b) = f (–a2) sin (ax + b)

operating both sides by 
1

2f ( )D

1
2f ( )D

. f (D2) sin (ax + b) = 
1

2f ( )D
. f (–a2) sin (ax + b)

1
2f ( )D sin (ax + b) = 

1
2f ( )

sin( )



a

ax b  provided f (–a2)  0

Case of failure :
In case f (–a2) = 0, the above method fails and we proceed as under we know
ei(ax + b) = cos (ax +b) + i sin (ax + b), since f (–a2) = 0

1
2f ( )

[cos( ) sin( )]
D

ax b i ax b     = 
x e

a

i ax b( )

( )



 f 2  , provided f (–a2)  0,

1
2f  

  
( )

[cos( ) sin( )
a

x ax b i ax b ]

Equating imaginary parts

1
2 2f f( )

sin( )
( )

sin( )
D

ax b
x

a
ax b 

 


If real parts are equated then 
1

2 2f f( )
cos( )

( )
cos( )

D
ax b

x

a
ax b 

 


In case f (–a2) = 0, the P.I. is obtained by repeated application of above rule as follow.
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1
2 2f f( )

sin( )
( )

sin( )
D

ax b
x

a
ax b 

 


1
2 2f f( )

cos( )
( )

cos( )
D

ax b
x

a
ax b 

 
 and so on

Rule – 2 :

To find the P.I., 
1

2f ( )D sin (ax + b) or 
1

2f ( )D  cos (ax + b), replace D2 by (– a2)  provided

f (–a2)  0, In case f (–a2) = 0, multiply the numerator by x and differentiate the denominator
w.r.t. D and apply the above rule provided f  (–a2)  0, and so on.

Note : In case f(D) contain terms such as D3 or D5 etc. replace by –a2 D and a4D respectively.

Example – 1 :  Solve (D2 + D + 1)y = sin 2x.

Solution :  The auxiliary equation is D2 + D + 1 = 0.

 
 

D
i1 3

2

 
F
HG
I
KJ 

F
HG
I
KJ

L
N
MM

O
Q
PP

C F e c
x

c
xx. . cos sin2

1 2

3

2

3

2 .

        P I
D D

x. . sin
 

F
HG

I
KJ

1

1
2

2  
  

F
HG

I
KJ

1

4 1
2

D
xsin




F
HG
I
KJ

1

3
2

D
xsin  





F
H
GG

I
K
JJ

D

D
x

3

9
2

2

b g
d i

sin






D
x

3

13
2

b g
sin    

2 2

13

3 2

13

cos sinx x
.

 The general solution is y = C.F. + P.I.

Example – 2 :  Evaluate the P.I. 


1

D 9
4sin3x

2 b g

Solution :  P I
D

x. . sin


F
HG

I
KJ

4

9
3

2

f a i e D cases failure   2 2 20 3d i , .


x

D
x

.
sin

4

2
3

 
z2 3

2

3
3x xdx

x
xsin cos
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Example – 3 :  Solve (D2 + 9)y = cos 3x.

Solution :  The auxiliary equation is D2 + 9 = 0.

Hence D = ± 3i.

 C.F. = c
1
cos3x + c

2
sin3x

P I
D

x. . cos


F
HG

I
KJ

1

9
3

2

[Here f (–a2) = f (–32) = 0, cases failure]


x

D
x

2
3cos

  
x x x

x
2

3

3 6
3

sin
sin

Case – III

When X = xm, where m > 0,

Here P.I.= 
1

f ( )D
xm= [f(D)]–1 xm

Expand [f(D)]–1 in assending powers of D as far as the terms in Dm and operate on xm terms
by term. We need not retain terms  Dm+1, Dm+2 etc. because Dm+1(xm) = 0 = Dm+2(xn) and so on.

Binomial expansion of any order

When x is (–ve) or a rational number (1 + x)n = 1 + nx +
n n

x x n( )

.
........ ......


  

1

12
2

T
r + 1

 = 
n n n n r

r
xr( )( )......( )

!

   1 2 1

(1 + x)–1 = 1 – x + x2 – x3 +......

(1 – x)–1 = 1 + x + x2 + x3 +.........

(1 + x)–2 = 1 – 2x + 3x2 – 4x3 + .........

Example – 1 :  Solve (D2 + 1)y = x.

Solution : The auxiliary equation D2 + 1 = 0

 D = ± i. Hence C.F. = c
1
 cosx + c

2
 sinx.

 


F
HG

I
KJP I

D
x. .

1

12

= (1 + D2)–1x

= (1 – D2)x (using binomial expansion)

= x.

 The general solution is y = C.F. + P.I.

 y = c
1
 cos x + c

2
sin x + x.
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Example – 2 :  Solve (D2 + 3D + 2)y = x2.

Solution : The auxiliary equation is D2 + 3D + 2 = 0

 (D + 2) (D + 1) = 0. Hence D = –2, –1.

 C.F. = c
1
e–2x + c

2
e–x.

P.I. 
 

F
HG

I
KJ

1

3 22
2

D D
x

 
F

HG
I
KJ


1

2
1

3

2

2 1

2D D
x   




F
HG

I
KJ

F
H
GG

I
K
JJ

1

2
1

3

2

3

2

2 2 2

2D D D D
x

  
F
HG

I
KJ

1

2
1

3

2

7

4

2
2D D

x    
F
HG

I
KJ

1

2
3

7

2
2x x .

 The general solution is y = C.F. + P.I.

Example – 3 : Find a particular solution of y + y = x3.           [B.P.U.T., 2006

Solution :  The given equation is

(D2 + 1)y = x3

where D stands for 
d

dx
.

 A particular solution of the given equation is 
3

2

1

D +1
x

= (1+D2)–1 x3

= (1 – D2 + D4 – ........) x3

= x3 – 6x

Case – IV :

When X = eax V, where V is a function of x.

D(eaxV) = eaxDV + aeaxV

= eax(D + a)V

D2(eaxV) = D[eax(D + a)]V = eax (D2 + aD)V + aeax(D + a)V

= eax (D2 + 2aD + a2)V = eax (D + a)2V

Thus we see that D on the L.H.S. is replaced by (D + a) on the R.H.S. and eax proceeds
(D + a)

 f(D) [eaxV)] = eaxf (D + a)V

Operating both sides by 
1

f ( )D

1

f ( )D
 . f(D) [eaxV] = 

1

f ( )D
[eax f (D + a)V]
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or  eaxV = eax 
1

f ( )D
f (D + a)V ..........(1)

Let f (D + a) V = V
1

or V = 
1

1
f ( )D a

V


substituting the value of V in eqn (i)

eax 
1

1
f ( )D a

V


=
1

1
f ( )

( )
D

e Vax

Now V
1
 = f (D + a) V, is a function of x, replacing V

1
by V,

We get 
1 1

f f( )
[ ]

( )D
e V e

D a
Vax ax



Hence P.I. = 
1 1

f f( )
[ ]

( )D
e V e

D a
Vax ax



Rule – 3 :

To find P.I. 
1

f ( )
[ ]

D
e Vax

replace D by (D + a) and write it as eax
1

f ( )D a
V


, and apply the

rules stated above, depending upon the nature of the function V.

Example – 1 :  Find the P.I. of (D2 – 4D + 3) y = ex cos 2x.

Solution :  P.I. = 
1

4 3
2

2D D
e xx

 

F
HG

I
KJ cos


   

F
HG

I
KJ

e

D D
x

x

1 4 1 3
2

2b g b g
cos




F
HG

I
KJ

e

D D
x

x

2 2
2cos 

 

F
HG

I
KJ

e

D
x

x

4 2
2cos

 


F
HG
I
KJ

1

2 2
2

e

D
x

x

cos  




F
HG

I
KJ

e D

D
x

x

2

2

4
2

2
cos

 




L
NM

O
QP

e D xx

2

2 2

8

b gcos

  
e

x x
x

16
2 2 2 2sin cosb g

  
e

x x
x

8
2 2sin cosb g .
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Example – 2 :  Solve (D2 – 2D + 2) y = ex sin x.
Solution :  The auxiliary equation is D2 – 2D + 2 = 0. Hence D = 1 ± i.

 C.F. = ex(c
1
 cosx + c

2
sinx)

 P.I. 
 

L
NM

O
QP

1

2 22D D
e xx sind i  

   

L
N
MM

O
Q
PP

e

D D
x

x

1 2 1 2
2b g b g

sin




L
NM
O
QP

e

D
x

x

2 1
sin  

 

L
NMM

O
QPP

e

D i D i
x

x

b gb g sin

= ex Imaginary part of 
1

D i D i
eix

 

L
NMM

O
QPPb gb g

= ex Imaginary part of 
1

2i
xeixL
NM
O
QP

= ex Imaginary part of  
L
NM

O
QP

1

2
ix x i xcos sinb g

 
1

2
xe xx cos

Alternatives P I
e

D
x

x

. . sin
2 1d i

[Here f (–1)2 = 0 cases failure.]

          
xe

D
x

x
e x

x
x

2 2
sin cos

 The general solution is y = C.F. + P.I.
Case – V :

When X is any other function of x.

Here P.I. = 
1

f ( )D a
X



If f(D) = (D – m
1
) ...........( D – m

n
), resolving into partial fractions

1 1

1

2

2f ( ) ( ) ( )
........

( )D

A

D m

A

D m

A

D m
n

n







 


P.I. = 
A

D m

A

D m

A

D m
n

n

1

1

2

2( ) ( )
........

( )



 

 X

= A
1

1 1 1

1
2

2( ) ( )
........

( )D m
X A

D m
X A

D m
Xn

n



 



= A
1
em1x Xe dx A e X e A e Xe dxm x m x m x

n
m x m xn n  z z z  1 2 2

2 .......
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Theorem, If V is a function of x

then 
1 1 1

f f f( ) ( )
.

( )D
xV x

D
V

d

dD D
V 

L
NM

O
QP

Example – 3 :  Solve (D3 – 3D2 + 3D –1) y = x2ex.

Solution : The auxiliary equation is D3 – 3D2 + 3D – 1 = 0

(i.e.) (D – 1)3 = 0

 D = –1 (thrice).

 C.F. = e–x (c
1
 + c

2
x + c

3
x2).

  P.I. 
  

F
HG

I
KJ

1

3 3 13 2
2

D D D
x ex


     

F
HG

I
KJ

e

D D D
x

x

1 3 1 3 1 1
3 2

2

b g b g b g


F
HG
I
KJe

D
xx 1

3
2


e xx 5

60
 (By integrating x2 thrice w.r.t. x)

 The general solution is y = C.F. + P.I.

 y = e–x (c
1
 + c

2
x + c

3
x2) 

x ex5

60
.

Illustrative Examples

Example –1 : Find the general solution by using substitution. y – 8y = 0
Solution: Here y – 8y = 0 which is a 2nd order homogeneous differential equation

m2emx – 8emx = 0 Let y = emx be the  required solution.
(m2 – 8)emx = 0 y = mmx  andy = m2emx

 The auxiliary eqution is

m2 – 8 = 0 emx  0d i
m2 = 8

  m 2 2  are two real and distinct roots.

 The general solution is y c e c em x m x 1 2
1 2

   y c e c ex x
1

2 2
2

2 2

Example – 2 : Solve the initial value problems y – y = 0, y (0) =3, y (0) = –3

Solution : Here y – y = 0, y (0) =3, y (0) = –3

which is a 2nd order homogeneous differential equation
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z2emx – emx = 0 Let y = emx  0 be the  required solution.
 (m2–1)emx = 0 y = memx  and y = m2emx

So the auxiliary equation is
m2 – 1 = 0
m = 1 are two real and distinct roots.

 The general solution is y c e c em x m x 1 2
1 2

   y c e c ex x
1 2 .......... (1)

   y c e c e1
x

2
x .......... (2)

Given y(0) = 3 i.e. for x = 0, y = 3
 equation (1) c

1
 + c

2
 = 3 .......... (3)

y (0) = –3 i.e. for x = 0, y = –3
 equation (2) c

1
 – c

2
 = –3 .......... (4)

 equation (3) + equation (4)  2 01c  c1 0   c2 3

 equation (1)     y 3e x  which is required particular solution.

Are the following functions be linearly independent of dependent on the given interval of
the following examples.

Example – 3 : (a)  x2,  x2lnx (x 1)  (b)  sin 2x, cos x sin x ( x < 0)
Solution : (a) Let, y

1
 = x2, y

2
 = x2  lnx (x 1)

Since 
y

y
2

1
 = lnx (except for x =1)  

y

y
2

1

 constant.

Hence y
1
, y

2
 are linearly independent.

Note : The concepts of linear dependence and independence of functions refer to an infinite set (the
points of I) but not merely to a single point.

(b) Let, y
1
 = sin 2x, y

2
 = cos x sin x ( x <0)

Since 
y

y
1

2
 = – 2 for all x < 0.

Hence y
1
, y

2
 are linearly dependent function.

Verify that the given function is a solution and derive the corresponding real general solu-
tion of the following examples.

Example – 4 : (a)   y = c
1
e2ix + c

2
e–2ix, y+ 42y = 0 (b) y = c

1
e(–k +2i)x + c

2
e(–k–2i)x, y+ 2ky + (k2 +4)y =0

Solution : (a) Let, y = c
1
e2ix + c

2
e–2ix, y+ 42y =0............. (1)

which is a 2nd order homogeneous differential equation

Let y = emx  0 be the  required solution.

y = memx y = m2emx

equation (1) becomes m2emx + 42emx = 0

(m2 + 42)emx =0

So the auxillary equation is
m2 + 42 = 0

m=  2i  are two complex and distinct roots.
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 The general solution is y c e c em x m x 1 2
1 2

  c e c eix ix
1

2
2

2 d i
(b) y = c

1
e(–k +2i)x + c

2
e(–k–2i)x, y+ 2ky + (k2 +4)y = 0

which is a 2nd order homogeneous differential equation

m2emx +2 kmemx +(k2 + 4)emx =0 Let y = emx> 0 be the  required solution.

(m2+2 km +k2 + 4)emx =0 y = memx

y = m2emx

So the auxillary equation is

m2 + 2km + (k2 + 4) =0

 
   

m
k k k2 4 4 16

2

2 2


 

  
2 4

2
2

k i
k i

m= –k  2i  are two complex and distinct roots.

 The general solution is y c e c em x m x 1 2
1 2

     y c e c ek i x k i x
1

2
2

2b g b g

Find a real general solutions of the following examples.
Example – 5 :  D – 4; 3x2 + 4x, 4e4x, cos2x – sin 2x

Solution : D – 4; 3x2 + 4x, 4e4x, cos2x – sin 2x

(i) Le y
1
 = 3x2 + 4x

Dy
1
 = 6x + 4

(D – 4)y
1
 = Dy

1
– 4y

1
 = 6x + 4 – 4(3x2 + 4x)

= 6x + 4 – 12x2 – 16x = –12x2 –10x +4.

(D – 4) (3x2 + 4x) = 4 –10x –12x2.

(ii) Le y
2
 = 4e4x

Dy
2
 = 16e4x

(D – 4)y
2
 = Dy

2
– 4y

2
 = 16e4x  – 16e4x  = 0

(D – 4)4e4x =0.

(iii) Le y
3
 = cos 2x  – sin 2x

Dy
3
 = –2 sin 2x – cos 2x

(D – 4)y
3
 = Dy

3
– 4y

3

= –2 sin 2x – 2 cos 2x – 4 cos 2x + 4 sin 2x

= 2 sin 2x – 6 cos 2x

(D – 4) (cos 2x – sin 2x) = 2 sin 2x – 6 cos 2x.

Example – 6 : Solve, (D2 – 4D + 3) y = sin 3x . cos 2x

Solution : (D2 – 4D + 3) y = sin 3x . cos 2x

For finding out C.F.

It’s A.E., D2 – 4D + 3 = 0
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 D2 – 3D – D + 3 = 0  D(D – 3) –1 (D – 3) = 0

 (D – 3)(D – 1) = 0  D = 3, 1

Hence, C.F. =  C
1
e3x + C

2
ex

P.I. = 
sin .cos (sin sin )3 2

4 3

1

2

5

4 32 2

x x

D D

x x

D D 




 
 = 

1

2

5

4 3 4 32 2

sin sinx

D D

x

D D 


 

L
NM

O
QP

 P.I. = 
1

2
1 2( . . . . )P I P I

P I
x

D D

x

D
D. .

sin sin
( . ). .

1 2
25

4 3

5

22 4
25

 


 
 

= 
( )sin ( )sin 




 



4 22 5

16 484

4 22 5

8842

D x

D

D x

= – 
1

884
4 5 5 22 5( cos sin )  x x  = 

2

884
10 5 11 5 ( cos sin )x x

= 
1

442
10 5 11 5( cos sin )x x

P.I.
2
 = 

sin sin ( )sin

( )( )

x

D D

x

D

D x

D D2 4 3 1 4 3

2 4

2 4 2 4 


  




 

= 
( )sin ( )sin2 4

4 16

2 4

202






D x

D

D x

=
2

20

4

20

1

10

1

5
sin cos sin cosx x x x    = 

1

10
2(sin cos )x x

Hence P.I. = 
1

2

1

442
10 5 11 5

1

10
2( cos sin ) (sin cos )x x x x  

L
NM

O
QP

= 
1

884
10 5 11 5

1

20
2( cos sin ) (sin cos )x x x x  

 C.S. is y = C.F. + P.I.

 y = C
1
e3x + C

2
ex + 

1

884
(10cosx – 11sin5x) + 

1

20
(sinx + 2cos x)

Example – 7 :  Solve, 
d y

dx

dy

dx
y e xx

2

2
-25 6 sin2   

Solution : The given equation is in symbolic form

(D2 + 5D + 6)y = e–2x + sinx

It’s A.E.  D2 + 5D + 6 = 0  (D + 2) (D + 3) = 0

 D = –2, D = –3

C.F. = C
1
 e–2x + C

2
e–3x
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P.I. 
 

1

5 62
2

D D
e xx sind i  

 


 

1

5 6

1

5 62
2

2D D
e

D D
xx sin


 


  

1

4 10 6

1

1 5 6
2e

D
xx sin   





x

D
e

D
xx1

2 5

2

5 5
2 sin

(cases failure)


 






x
e

D

D
xx

4 5

5 5

25 25

2
2

sin

 



 

 xe
D

x xe
x xx x2 25 5

25 25

5

50
sin

sin cosb g
  xe x xx2 1

10
sin cosb g

C.S. i.e. y = C
1
   e C e xe x xx x x     2

2
3 2 1

10
sin cosb g

Example – 8 : Solve,  (D3 – D)y  = 2x + 1 +  4 cos x + 2ex

Solution : (D3 – D)y = 2x + 1 + 4 cos x + 2ex

For finding out C.F. it’s A.E. is,  D3 – D = 0  D (D2 – 1) = 0

 D(D + 1) ( D – 1) = 0  D = 0, –1, 1

Hence C.F. = C
1
 + C

2
e–x + C

3
ex

P.I. = 
2 1 4 2

3

x x e

D D

x  



cos

= 
2 1 4 2
3 3 3 3

x

D D D D

x

D D

e

D D

x












cos

= P.I.
1
 + P.I.

2
+P.I.

3
+P.I.

4

P.I.
1
= 

2 2

1

2

1

2
1

3 2 2
2 1x

D D

x

D D D

x

D D
D x










   

( ) ( )
( )

=         z2
1

2
22 4

D
D D x

D
x xdx( .....) ( )  = 

F
HG
I
KJ  2

2

2
2x

x

P.I.
2
 = 

1 1

1 1

1

13 2

0

2

0

2( ) ( ) ( ) ( )D D D D

x

D D D

x

D










=    1
1

12 1 0

D
D x

D
( )  (1 + D2 + D4 + ..... ) x0

=        z1 1
10

D
x

D
dx x

P.I.
3
 = 

4 4

1
4

2
2

3 2

cos cos

( )
.
cos

sin
x

D D

x

D D

x

D
x








 

P.I.
4
= 

2
2

3 3

e

D D

e

D D

x x





.
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Hence case of failure occures

So, P.I.
4
 = 2x . 

e

D
x

e
xe

x x
x

3 1
2

22 
 

P.I. = P.I.
1
+P.I.

2
+P.I.

3
+P.I.

4

= –x2 – x – 2 sin x + xex

= – (x2 + x) – 2 sin x + xex

Hence is y = C.F. + P.I.
y = C

1
+C

2
e–x + C

3
ex+xex – (x2 + x) – 2 sin x

Example – 9 : Solve 
d y

dx
y x x

4

4
cos .cosh 

Solution :  
d y

dx
y x x

4

4
cos .cosh 

The  above equation can be symbolically written by

(D4 – 1)y = cos x . cosh x

For finding out C.F. it’s A.E. is, D4 – 1 = 0

 (D2 + 1) (D2 – 1) = 0  D = ± i, ±1

Hence C.F. = C
1
 cos x + C

2
 sin x + C

3
ex + C

4
e–x

P.I. = 
cos .cosh

D4

x x




F
HG

I
KJ





1

2

14

cos .x
e e

D

x x

= 
1

2 1 1

1

24 4 1 2

e x

D

e x

D
P I P I

x xcos cos
[ . . . . ]






L
NM

O
QP
 



P.I.
1
 = 

e x

D
e

x

D
e

x

D D D D

x
x xcos
.

cos

( )
.

cos

( )( )4 4 2 21 1 1 2 2 2


 


  

= e
x

D D
e

x

D
e

x e
xx x x

x

.
cos

( )( )
.

cos
.
cos

cos
2 1 2 1 4 1 5 52 










P.I.
2
 = 

e x

D
e

x

D

e x

D D D D
e

x

D D

x
x

x
x










 


      

cos
.

cos

( )

cos
.

cos

( )( )4 4 2 21 1 1 2 2 2 2 1 2 1d id i

= e
x

D D
x

  

cos

( )( )1 2 2 1
 = e

x

D

e
xx

x









cos
cos

4 1 52

 P.I. = 
1

2 5 5

e
x

e
x

x x






L
NM

O
QP



cos cos  = 
cos

cos .cosh
x e e

x x
x x



F
HG

I
KJ  



5 2

1

5

 Hence C.S. is y = C.F. + P.I.

 y = C
1
 cos x + C

2
 sin x + C

3
ex + C

4
e–x  – 

1

5
cos .coshx x



6.26 Applied Engineering Mathematics – I

Example – 10 : Solve  
d y

dx

dy

dx
y xe sinxx

2

2 2   .

Solution : Given equation in symbolic form is (D2 – 2D + 1) y = xex sinx

A.E. is D2 – 2D + 1 = 0 or (D – 1)2 = 0 so that D = 1, 1
 C.F. = (c

1
 + c

2
x) ex

P I
D

e x x e
D

x xx x. . sin sin


  
 

1

1

1

1 1
2 2b g b g    ze

D
x x e

D
x x dxx x1 1

2
sin sin

Integrating by parts       ze
D

x x x dx e
D

x x xx x1
1

1
cos cos cos sinb g b g b g

       L
NM

O
QPzze x x x dx e x x x dx xx xcos sin sin sin cosb g { }1

= ex [–xsin x – cos x – cos x] = – ex (x sinx + 2cosx)

Hence the C.S. is y = (c
1
 + c

2
x) ex – ex (x sin x + 2 cos x).

Example – 11 : Solve the differential equation
2

2
– 4 + 4

d y dy
y

dxdx
 = ex cos x.     [B.P.U.T. – 2004

Solution :  The given equation is

2

2
– 4 4

d y dy
y

dxdx
 = ex cos x .... (1)

The corresponding homogeneous equation of (1) is

2

2
– 4 4

d y dy
y

dxdx
 = 0 .... (2)

The auxiliary equation of (2) is

m2 – 4m + 4 = 0

or, (m – 2)2 = 0 or,  m = 2, 2

So, the complementary function of (1) is

yc = (c1 + c2 x) e2x .... (3)

where c1 and c2 are arbitrary constants.

The nonhomogeneous part of the equation (1) is ex cos x which is not in the complementary
function yc. We also note that the successive derivatives of ex cos x are linear combination
of ex cos x and ex sin x.

Thus we assume a particular integral of (1) as.

yp = A ex cos x + B ex sin x.

where A, B are arbitrary constants to be determined , such that yp satisfies the given eqn (1).

Now,  py  = 
pdy

dx
 = AAex cos x – AAex sin x + B ex sin x + B ex cos x.
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and py  = 

2

2

pd y

dx
 – A A ex xos x – A ex sin x

     = –2A ex sin x + 2B ex cos x.

Substituting the values of yp, py  and py  in (1), we get

–2A ex sin x + 2B ex cos x – 4 (A ex cos x – A ex sin x + B ex sin x + B ex cos x)
         + 4 (A ex cos x + B ex sin x) = ex cos x.

or, 2A ex sin x – 2 B ex cos x = ex cos x.
Equating the co-efficients of similar terms from both sides, we get

2A = 0 and –2B = 1             A = 0 and B = 
1

2


So, yp= 
1

sin
2

xe x

Hence the general solution of (1) is
y = yc + yp

i.e., y = (c1 + c2 x) e2x 
1

sin
2

xe x .

6.4 : Solution of Linear Equations by Reducing the order

We consider the general nth order linear differential equation :

1 2

1 2 11 2
( ) ( ) ........... ( ) ( ) = X ( )

n n n

n nn n n

d y d y d y dy
a x a x a x a x y x

dxdx dx dx

 

 
     ... (1)

where ai (x) (i = 1, 2, ......., n) and X are functions of x. In the preceeding sections of this chapter
we have developed a theory for the solutions of the linear equation (1) when a1, a2, ......., an are
constants. But the method depends on the knowledge of n linearly independent solutions of the
corresponding homogeneous equation.

      
1 2

1 2 11 2
( ) ( ) ........... ( ) ( ) = 0

n n n

n nn n n

d y d y d y dy
a x a x a x a x y

dxdx dx dx

 

 
     .... (2)

But, if ai’s are arbitrary functions of x, then no general method can be suggested for finding
general solution of (1). In this section, if one particular solution of (2) is given, then there is a
technique for finding a second independent solution. This technique reduces the given equation
to a linear equation that is one order lower than the original. This method is especially useful
when the given equation is of second order. For, in that case, the reduced equation is a linear
equation of order one which is outrightly solvable.
Let us consider the second order linear equation.

2

2
( ) ( )

d y dy
a x b x y

dxdx
  = X (x) .... (3)

We suppose that y = u (where u is some function of x) be a solution of the reduced equation.

2

2

d y dy
a by

dxdx
  = 0 .... (4)
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We set y = uv in the equation (1) where v is a function of x.

Then
dy

dx
= 

2 2

2 2
2 ·

d v d u du dv
u v

dx dxdx dx
 

Substituting the expressions for y, 
dy

dx
 and 

2

2

d y

dx
 in (1), we get

2 2

2 2
2

d v dv d u dudu
v a bu vau

dx dxdxdx dx

  
           

 = X

or,

2

12

d v dv
a

dxdx
 = X1 ... (4)

where  a1 = 
2 du

a
u dx

  and X1 = 
X

u

and 
2

2

d u du
a bu

dxdx
   = 0, since u is a solution of (2).

Putting 
dv

dx
 = w in (4), we have

dw

dx
 + a1 w = X1 ... (5)

which is a linear equation in w of first order. An integrating factor of (5) is

2 du
a dx

u dxe

 
 

 
  = 2 a dx

u e

Multiplying the equation (5) by 2 a dx
u e , we get

 2 a dxd
w u e

dx
 = 

X

u
 2 a dx
u e

Integrating, w 2 a dx
u e = A

a dx
u e dx 

Since  v = ,
dw

dx
 we have

v = 
–

2 2

1 1
B + A

a dx a dx a dx
e dx e u e dx dx

u u

     
 

  
where A and B are arbitrary constants.

Hence the general solution of (3) is

y = uv.

= Bu + Au 22

11 a dx a dxa dx
e u e dxe dx u dx

uu

      
 

 

where A and B are arbitrary constants.
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Note : Some solutions of the homogeneous linear equation.
2

2

d y dy
a by

dxdx
  = 0 (a, b are arbitrary functions)

Can be determined by inspection. They are :

(i) y = x is a particular solution if a + bx = 0.

(ii) y = ex is a particular solution if 1 + a + b = 0

(iii) y = e–x is a particular solution if 1 – a + b = 0.

(iv) y = emx is a particular solution if m2 + am + b = 0.

Example – 1 : Using the method of reduction of order, solve the following differential equation
(1 – x2) y – 2xy + 2y = 0. Given that y1 = x is a solution.

Solution :

2
2

2
(1 ) 2 2

d y dy
x x y

dxdx
   = 0 .... (1)

We first observe that y1 = x satisfies the equation (1). We set y = vx in the equation (1) where v is
a function of x.

Then 
dy dv

v x
dx dx

   and 

2 2

2 2
= 2

d y d v dv
x

dxdx dx
  substituting the expressions for y, 

dy

dx
 and 

2

2

d y

dx
in (1), we get,

2
2

2
(1 ) 2 22

dvd v dv
x x v x vxx

dxdxdx

   
      

  
 = 0

or,

2
2 2

2
(1 ) 2 (1 2 )

d v dv
x x x

dxdx
   = 0

d v

dx

x

x x

dv

dx

2

2

2

2

2 1 2

1
0






d i
d i

... (2)

We put 
dv

dx
= u

Then the equation (2) becomes

2

2

2(1 2 )

(1 )

du x
u

dx x x





= 0  ( x  0, 1)

which is a linear equation in u of order one.

or,
2 2

2

2 (1 )

(1 )

du x x
dx

u x x

 



= 0   or,  

2

2 2
–

1

du x
dx

u x x

 
  

 
= 0

Integrating,
log u + log x2 + log (1 – x2) = log c1,

where c1 is a positive arbitrary constant.

or, u = 
1

2 2(1 )

c

x x
  or, 

dv

dx
 = 

1
2 2(1 )

c

x x
 =

dv
u

dx

 
  

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or, dv = 1 2 2

1 1

1
c dx

x x

 
 

 

Integrating, v = 1 2
1 1 1

log ,
2 1

x
c c

x x

 
   

 
(where c2 is an arbitrary constant)

Hence the general solution of the equation (1) is

y = c1 2
1 1

1 log
2 1

x
x c x

x

 
   

 

Example – 2 : Solve the equation (x – 1) y – xy + y = 0 by reducing the order using y = ex as
one of the solution.           [B.P.U.T., 2007

Solution : The given equation is

2

2
( 1)

d y dy
x x y

dxdx
   = 0 .... (1)

We note that y = ex satisfies the equation (1). We set y = ex v in the equation (1) where v is a
function of x.

Now, 
dy

dx
= ex v + ex 

dv

dx
 and 

2

2

d y

dx
 = exv +2 ex

dv

dx
 + ex

2d v

dx

Substituting the values of y, 
dy

dx
 and 

2

2

d y

dx
 in (1), we get

2

2
( 1) 2x x x xx xdv d v dv
x e v e e x e ve v e

dx dxdx

   
       

  
 = 0

or,   
2

2
( 1) (2 2 ) ( )x x x x x x x xd v dv
x e xe e x e x e v e v xe v e v

dxdx
         = 0

or, 
2

2
( 1) ( 2)x xd v dv
x e x e

dxdx
    = 0

or, 
2

2

2

1

d v x dv

x dxdx





 = 0  or, 

2

1

dw x
w

dx x





 = 0, where w = 

dv

dx

or, 
2

1

dw x
dx

w x





 = 0

or,
1

1
1

dw
dx

w x

 
  

 
 = 0

Integrating, log w + x – log (x – 1) = log c1
where c1 is a positive arbitrary constant.
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or, 
1

log
( 1)

w

c x 
 = –x      or,   w = c1 (x – 1) e–x.

or, 
dv

dx
 = c1 (x – 1) e–x

or, dv = c1 (x – 1) e–x dx.

Integrating, v = c1 (– xe–x + e–x – e–x) + c2
where c2 is an arbitrary constant.
Hence the general solution of (1) is  y = vex.
i.e., y = –c1 x + c2 ex.
where c1 and c2 are arbitrary constants.

6.5 : Cauchy-Euler Homogeneous Equations

Equation Reducible to linear equations with constant co-efficients

A. Cauchy’s homogeneous linear equations :
A linear differential equation of the form

xn
d y

dx
a x

d y

dx
a y X

n

n
n

n

n n   


1
1

1

1
....... ....(1)

i.e. (xnDn + a
1
xn–1Dn – 1 + .........+ a

n
) y =X ....(2)

Where a
1
, a

2
 ........a

n
 are constants and X is either a constant or a function of x only is called

a homogeneous linear differential equation. Note that the index of x and the order of derivative
is same in each term of such equations .These are also known as Cauchy Euler equations.

Where D stands for  
d

dx
, D2 for 

d

dx

2

2  ..... Dn for 
d

dx

n

n

Working Rule for finding solution of (1) or (2).

To solve (1) or (2) , we generally change the variable x to t, by putting x = et, i.e.

t = log x, i.e. elogx = x

t = log x, 
dt

dx x


1
...(3)

dy

dx

dy

dt

dt

dx x

dy

dt
 . .

1
...(4)

x
dy

dx

dy

dt

d

dt
D 

F
HG

I
KJ,   or,,  x

dy

dx
Dy ....(5)

Again 
d y

dx

d

dx

dy

dx

d

dx x

dy

dt

2

2

1

F
HG
I
KJ 
F
HG
I
KJ

= –
1 1

2x

dy

dt x

d

dx

dy

dt

F
HG
I
KJ  = – 

1 1
2x

dy

dt x

d

dt

dy

dt

dt

dx

F
HG
I
KJ .
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= – 
1 1 1

2

2

2x

dy

dt x

d y

dt x
 . .  = – 

1 1 1
2 2

2

2 2

2

2x

dy

dt x

d y

dt x

d y

dt

dy

dt
  

F
HG

I
KJ.

or, x2 
d y

dx

d y

dt

dy

dt
D D y D D y

2

2

2

2
2 1     ( ) ( ) .............. (6)

and so on. Thus we have the following formulas.

x
dy

dx
Dy ,     x

d y

dx
D D y2

2

2
1 ( )    or x2D2 = D(D–1)

x
d y

dx
D D D y3

3

3
1 2  ( )( ) or x3D3 = D(D –1)(D – 2)

..............................................................................

..............................................................................

x
d y

dx
D D D n yn

n

n
   ( ).........( )1 1

Using (3) and (6), the given equation (2) becomes f(D) y = T, where T is now a function of
t only.
Now D, D2........etc will stand for diffferentiation once, with respect to t and so on; similarly

1 1
2D D

,  will mean integration once twice with respcet to t and so on.

B. Legender’s Linear Differential Equation:

An equation of the form (ax + b)n 
d y

dx

n

n + K
1 
(ax + b)n–1

d y

dx

n 1

n 1



  + ..... k
n
y = X

Where k’s are constant and ‘X’ is a function of x, is called Legendre’s linear equation.
such equations can be reduced to linear equations with constant cefficients by putting

(ax + b) = et, t = log (ax + b), ax = et – b  x = 
e b

a

t 

i.e. (ax + b) 
dy

dx
 = a Dy, (ax + b)2

d y

dx

2

2 = a2D (D – 1)y  and so on.

ax b
d y

dx
a D D D y   b g b gb g3

3

3
3 1 2 and so on.

t
d y

dt

k

a
t

d y

dt

k

a
t

dy

dt

k

a
y

a

a
F

t b

a
n

n

n
n

n

n
n
n n n

    
F
HG
I
KJ








1 1
1

1
1
1

.....

For example, we consider the equation

(3x + 2)2 
2

2

d y

dx
+3 (3x + 2) 

dy

dx
 – 36y = 3x2 + 4x + 1

Let us put 3x + 2 = t
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Then  
dy

dx
  = 

dy dt

dt dx
 = 3

dy

dt
 and 

2

2
3

d y d dy

dx dtdx

 
  

 

                 = 
2

2
3

d y dt

dxdt

                = 
2

2
9

d y

dt

 The given equation reduces to

2
2

2
4

d y dy
t t y

dtdt
  = 

2
1 2 2

4 1
9 3 3

t t     
     

    

which is an equation of Cauchy-Euler type and so it can be solved by the method given in
section

Considering a Cauchy-Euler equation of order two in the following example we illustrates
the above method.

Illustrative Examples

Example – 1 :  Solve x
d y

dx
2x

dy

dx
4y x2

2

2
4  

Solution : x
d y

dx
x

dy

dx
y x2

2

2
42 4  

Put x = et, D
d

dt
 , x

dy

dx
Dy , x

d y

dx
D D y2

2

2
1 b g  in (1), we get

D (D – 1)y –2 Dy – 4y = e4t or (D2 – 3D – 4)y = e4t

A.E. D2– 3D – 4 = 0  (D – 4) (D + 1) = 0  D = – 1, 4
C.F. C.F. = C

1
e–t + C

2
e4t

P.I. P.I.
1

D 3D 4
e

2

4t
 

 





t
1

2D 3
e t

1

2 4 3
e

te

5
4t 4t

4t

b g
Thus, the complete solution is given by

y = C
1

1

x
 + C

2
x4 

1

5
x4 logx.

Example – 2 : Solve, x
d y

dx
3x

d y

dx

dy

dx
x logx2

3

3

2

2
2  

Solution :  x
x y

dx
x

d y

dx
x

dy

dx
x x3

3

3
2

2

2
33   log
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Let x = ez so that z = log x, D
d

dz


The equation becomes after substitution

[D (D – 1) (D – 2) + 3D (D – 1) + D] y = ze3z

or D3y = ze3z

Auxiliary equation is D3 = 0, or D = 0, 0, 0]

C.F = C
1
 + C

2
z + C

3
z2 = C

1
 + C

2
 logx + C

3
(log x)2

P.I.    



1 1

3
3

3 3

3D
ze e

D
zz z

b g

 
F
HG
I
KJ   



e
D

z
e

D zz
z

3
3 31

27
1

3 27
1b g

   
e

z
x

x
z3 3

27
1

27
1b g b glog

Complete solution is y = C
1
 + C

2
 logx + C

3
(log x)2 

x3

27
 (logx – 1)

Example – 3 : Solve (2 3) (2 3) 12 62
2

2
x

d y

dx
x

dy

dx
y x    

Solution :  (2 3) (2 3) 12 62
2

2
x

d y

dx
x

dy

dx
y x    

Let 2x + 3 = et   2x = et – 3  x = 
et  3

2
 then log (2x + 3) = t

we know that 
dy

dx

dy

dt

dt

dx
  

dy

dx

dy

dt x
 



2

2 3

 (2x + 3) 
dy

dx
= 2Dy and (2x + 3)2

d y

dx

2

2  = 22D(D – 1) y

Hence the above eqn can be written as,

[4D (D – 1) – 2D – 12] y = 6
et F
HG
I
KJ

3

2

For finding out C.F. it’s A.E. is, 4D2 – 6D – 12 = 0

D = 
6 228

8

6 2 57

8

3 57

4









Hence C.F. = c e c e
t t

1

3 57

4

2

3 57

4

F
HG

I
KJ

F
HG

I
KJ
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P.I = 
1

4 6 122D D 
3(et – 3)

P.I.
1
 = 3 . 

e

D D

e
e

t t
t

4 6 12
3

14

3

142  






.

P.I.
2
 = 



 
 

9

4 6 12

9

12

3

42D D
Hence C.S. is y = C.F. + P.I.

 y = c e c e e
t t

t
1

3 57

4
2

3 57

4 3

14

3

4

F
HG

I
KJ

F
HG

I
KJ  

 y = c
1
(2x + 3)

3 57

4
2 3

3 57

4

3

14
2 3

3

4
2

F
HG

I
KJ  

F
HG

I
KJ   c x x( ) ( )

Example – 4 : Solve (1 ) (1 ) 4cos{log(1 )}2
2

2
     x

d y

dx
x

dy

dx
y x

Solution : (1 ) (1 ) 4cos{log(2 )}2
2

2
     x

d y

dx
x

dy

dx
y x

Let (1 + x) = et   t = log (1 + x)

Hence the above equation can be symbollically written as

[D(D – 1) + D + 1] y = 4 cos t

For finding out C.F., it’s A.E. is D2 + 1 = 0  D = ± i

C.F. = c
1
cos t + c

2
 sin t

P.I. = 4 
cos

. .
cos

sin
t

D
t

t

D
t t

2 1
4

2
2


 

Hence C.S. is y = C.F. + P.I.

 y = c
1
cos t  + c

2
sin t + 2t sin t

 y = c
1
cos {log (1 + x)] + c

2
sin{log(1 + x)}] + 2 log (1 + x) sin {log (1 + x)}]

6.6 : The Method of Undermined Co-efficients

The method of undetermined co-efficients is a procedure for finding particular solution yp
of the differential equation of the form.

        
1 2

0 1 2 11 2
...... = X

n n

n nn n n

d y d y d y dy
a a a a a y

dxdx dx dx

 

 
      .... (1)

Where a0, a1, a2, ........., an are constants and X either (1) a function defined by one of the
following :

(i) xn , where n =  0, 1, 2, ........

(ii) eax, where a (0) is a constants.
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(iii) sin (bx + c), where b (0) and c are constants.

(iv) cos (bx + c), where b (0) and c are constants.

or (2) a function defined as a finite product (or sum) of two or more functions of types given in (i),
(ii), (iii) and (iv).

This method is useful only when X contains terms in some special forms. The form of a
particular integral y

p
 can be inferred from the form of X. The following table suggests the form of

the trial solution y
p
 (for particular integral) to be used corresponding to a special form of X.

TABLE

S.No. Special form of X Trial solution y for P.I.

1 xn or a
n
xn A

0
 + A

1
x + .......+ A

n
xn

or a
0
 + a

1
x + a

2
x2 + ......+a

n
xn

2. eax or peax Aeax

3. a
n
xneax or eax(A

0
 + A

1
x + A

2
x2 + ......+A

n
xn)

eax (a
0
 + a

1
x + a

2
x2 + ....... L a

n
xn)

4. p sin ax or q cos ax or A sin ax + B cos ax
p sin ax + q cos ax

5. pebx sin ax or qebx cos ax or ebx (A sin ax + B cos ax)
ebx (p sin ax + q cos ax)

6. xn sin ax or a
n
xn sin ax or (A

0
 + A

1
x + ....... + A

n
xn) sin ax

xn cos ax or a
n
xn cos ax or + (A

0
 + A

1
 x + .......+A

n
xn) cos ax

(a
0
 + a

1
x + ......+ a

n
xn) sin ax or

(a
0
 + a

1
x + .....+ a

n
xn) cos ax

Remark - 1 : In the above table, n is a positive integer and a
0
, a

1
,......,a

n
, p, q, a, b, A

1
, A

1
, .......A

0
, A

1
,

.....A
n
 are constants. The constants occuring in second column are known and the constants

occuring in third column are determined by subsituting the trial solution in given equation
i.e., they are found from the resulting identity f(D)y = X.

Remark - 2 : If R.H.S. X of given equation f(D)y = X is a linear combination of more than one special
forms of the above table, then the trial solution must be taken as the sum of the corresponding

trial solutions with appropriate constant coefficients to be evaluated later on.

For example, the function X may be defined as X = x3 + x2 sin 2x + e4x.

We consider the differential equation

2

2
2 3

d y dy
y

dxdx
  = e4x.... (2)

We proceed to find a particular solution (yp) of the equation (2). We observe that the
differential equation (2) requires a solution which is such that its second derivaties, minimum
twice its first derivative, minimum three times the solution itself add up to the exponential function
e4x. Since the successive derivatives of e4x are 4e4x, 16e4x, 64e4x,........., it seems reasonable that
the desire particular solution might be a constant multiple of e4x.

Thus we assume yp= Ae4x..... (3)

where A is a constant (undetermined co-effcient) to be determined such that (3) is a solution
of (2). Differentiating (3) with respect to x, we obtain
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py = 4 44A , = 16Ax x
pe y e

Then from (2), we get

16Ae4x – 8Ae4x – 3Ae4z = e4x.

or 5Ae4x= e4x .... (4)

Since the solution (3) is to satisfy the differential equation (2) identically for all x. On some
real interval, relation (4) must be an identity in x and hence the co-efficient of e4x on bothsides of

(4) must be equal. Equating the co-efficient we get A = 
1

5
. So, a particular solution of (2) will be

yp = 
1

5
e4x.

Now we consider the differential equation,

2

2
2 3

d y dy
y

dxdx
  = e3x .... (5)

which is exactly the same as equation (2) except that e4x in right member has been replaced
by e3x. As before if we now assume a particular solution of the form

yp = Ae3x .... (6)

We find that

9Ae3x – 6Ae3x – 3Ae3x = e3x

or, 0 = e3x.

which does not hold for any real x. This impossible situation tells us that there is no particular
solution of the assumed from (6).

We have already mentioned that the equations (2) and (5) are almost the same, only difference
between them being the constant multiple of x in the exponents of their respective nonhomogeneous
terms e4x and e3x. The equation (2) involving e4x has a particular solution of the assumed form
Ae4x where the equation (5) involving e3x has not any solution of the assumed form Ae3x. The
reason for the difference in the two cases is found by examining the solution of the homogeneous
differential equation.

2

2
2 3

d y dy
y

dxdx
  = 0 .... (7)

The auxiliary equation corresponding to (7) is m2 – 2m – 3 = 0 whose roots are 3 and –1 and
so e3x, e–x are linearly independent solutions of (7).

The indicates that the failure to obtain a solution of the form yp = Ae3x for the equation (5)
is due to the fact that the function e3x in this assumed solution is a solution of the homogeneous
equation (7) corresponding to (5).

Then for a particular solution of (5) we can assume a solution of the form yp = Axe3x.

We now proceed to present the method of undetermined co-efficients for finding a particular
solutions through the following examples.
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Illustrative Examples

Example – 1 :  Solve the initial value problem y + 4y = 4 cos 2x with y (0) = 0, y(0) = 2, using
the method of undetermined co-efficients.            [B.P.U.T.– 2007

Solution : The given differential equation is

2

2
4

d y
y

dx
 = 4 cos 2x .... (1)

The auxiliary equation of the corresponding homogeneous equation.

2

2
4

d y
y

dx
 = 0 .... (2)

is  m2 + 4 = 0, which gives m = ± 2i.

So, the complementary function of (1) is

yc = c1 cos 2x + c2 sin 2x .... (3)

where c1 and c2 are arbitrary constants.

The nonhomogeneous part of the equation (1) is 4 cos 2x and cos 2x appears in the
complementary function yc. We replace the function cos 2x and sin 2x x cos 2x and x sin 2x
respectively by asitis So, we assume a particular integral of (1) as

yp = x (A cos 2x + B sin 2x)

where A and B are arbitrary constants to be determined such that yp satisfies the given
equation.

Now, py  = (–2A sin 2x + 2B cos 2x) x + A cos 2x + B sin 2x

and py  = (–4 A cos 2x – 4B sin 2x) x + (–2A sin 2x + 2B cos 2x) – 2A sin 2x + 2B cos 2x

Substituting the expressions for yp and py  in the equation (1), we have

   (–4A cos 2x – 4B sin 2x) x – 4A sin 2x + 4B cos 2x + 4x (A cos 2x + B sin 2x) = 4 cos 2x

or  4B cos 2x – 4A sin 2x = 4 cos 2x

Equating the co-efficients of similar terms from bothsides, we get

4B = 4 and –4A = 0   or, B = 1 and A = 0

so, yp = x sin 2x

Hence the general solution of (1) is y = yc + yp.

i.e., y = c1 cos 2x + c2 sin 2x + x sin 2x .... (4)

Now,  y = – 2 c2 sin 2x + 2c2 cos 2x + sin 2x + 2x cos 2x .... (5)

Given conditions arey (0) = 0, y (0) = 2

Using given conditions we get from (4) and (5),

0 = c1 and 2 = 2c2
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i.e., c1 = 0 and c2 = 1

 The required solution of (1) is

y = sin 2x + x sin 2x

Example – 2 : Solve the differential equation 
2

2 3
2

– 3 + 2 = 2 + + 2 + 4x x xd y dy
y x e xe e

dxdx
 using

the method of undetermined co-efficients.

Solution : The given equation is

2

2
3 2

d y dy
y

dxdx
  = 2x2 + ex + 2xex + 4e3x .... (1)

The auxiliary equation of the corresponding homogensous equation.

2

2
3 2

d y dy
y

dxdx
  = 0 .... (2)

is  m2 – 3m + 2 = 0

i.e., (m – 1) (m – 2) = 0

i.e., m = 1, 2

so, the complementary function of (1) is

yc = c1 ex + c2 e2x.

Where c1 and c2 are arbitrary constants.

The non-homogeneous part of (1) is 2x2 + ex + 2xex + 4e3x which is the linear
combination of x2, ex, xex and e3x.

Now, the function x2 and its ex successive derivatives of x2 are multiplies of x2, x, 1.
The function and its successive derivatives of ex are ex. The function xex and the
successive derivatives of xex are expression involving xex and ex. The function e3x and
the derivatives of e3x are multiple of e3x.

We now observe that the set {x2, x, 1} includes x2 which is included in the
complementary function yc, e

x appears in yc, xex of the set {xex, ex} occurs in yc and e3x

also appears in yc.

Thus we take a particular integral of (1) as

yp = A x2 + B x + C + De3x + E x2 ex + Fxex.

where A, B, C, D, E and F are arbitrary constants.

 py  = 2A x B + 3D e3x + Ex2 ex + 2E xex + F xex + Fex.

and py  = 2A + 9De3x + E x2 ex + 2E xex + 2Eex + 2E xex + Fex + F xex + Fex.

= 2A + 9De3x + Ex2 ex + 4Exex + 2Eex + Fxex + 2Fex.

Substituting yp, andp py y   in the equation (1), we get

(2A – 3B + 2C) + (2B – 6A) x + 2A x2 + 2D e3x – 2E xex + (2E – F) ex = 2x2 + ex + 2xex+ 4e3x.
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Equating co-efficients of like terms from bothsides, we have

2A – 3B + 2C = 0,  2B – 6A = 0,

2A  = 2,  2D = 4,

–2E = 2, 2E – F = 1,

From the above relations we have

A= 1, B = 3, C = 
7

2
, D = 2, E = –1, F = –3

So, the particular integral is

yp = x2 + 3x + 
7

2
 + 2e3x – x2 ex – 3xex.

Hence the general solution of (1) is
y = yc + yp.

i.e., y = c1 ex + c2e2x + x2 + 3x + 
7

2
 + 2e3x – x2ex – 3xex.

Example – 3 : Solve (D3 + 2D2 – D – 2) y = ex + x2.

Solution : Given (D3 + 2D2 – D – 2) y = ex + x2 ..............(1)

Hence the auxiliary equation is D3 + 2D2 – D – 2 = 0

or D2(D + 2) – 1 (D + 2) = 0 so that D = 1, – 1, – 2.

 C.F. = c
1
ex + c

2
e–x + c

3
e–2x. ................(2)

Corresponding to special form x2 of R.H.S. of (9), we choose trial solution for P.I. as A
0
 + A

1
x +

A
2
x2. Since ex occurs in R.H.S. of (1) and it also occurs in the C.F. (2) corresponding to a root of

multiplicity one, so we choose trial solution for P.I. as A
3
x ex (note that term ex is not included,

since it already appears in C.F. (2) with arbitrary coefficient c
1
). Combining the above two trial

solutions, we attempt a trial solution for P.I. of the form.

y
p
 = A

0
 + A

1
x + A

2
x2 + A

3
x ex. ...............(3)

Since y
p
 must satisfy (1), we have (D3 + 2D2 – D – 2) y

p
 = ex + x2

or D3y
p
 + 2D2y

p
 – Dy

p
 – 2y

p
 = ex + x2 ...............(4)

(3)  Dy
p
 = A

1
 + 2A

2
x + A

3
ex(x + 1) ............(5)

(5)  D2y
p
 = 2A

2
 + A

3
ex (x + 2) ...........(6)

(6)  D3y
p
 = A

3
ex(x + 3). ............(7)

Using (3), (5), (6) and (7), (4) reduces to

A
3
ex(x + 3) + 4A

2
 + 2A

3
ex(x + 2) – A

1
 – 2A

2
x – A

3
ex(x + 1)

– 2A
0
 – 2A

1
x – 2A

2
x2 – 2A

3
xex = ex + x2

or  – 2A
2
x2 – 2(A

1
 + A

2
)x + 4A

2
 – A

1
– 2A

0
 + 6A

3
ex = ex + x2,

which is an identity and so equating coefficients of like terms,
– 2A

2
 = 1, – (A

1
 + A

2
) = 0, 4A

2
 – A

1
 – 2A

0
 = 0, 6A

3
 = 1; hence

A
2
 = 
F
HG
I
KJ

1

2
, AA

1
 = 

1

2
, AA

0
 = 
F
HG
I
KJ

5

4
, AA

3
 = 

1

6
. So from (3),
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P.I. = 
F
HG
I
KJ

5

4
 + 

1

2

F
HG
I
KJ x – 

1

2

F
HG
I
KJ x2 + 

1

6

F
HG
I
KJ xex and general solution is

y = c
1
ex + c

2
e–x + c

3
e–2x – 

5

4

F
HG
I
KJ  + 

1

2

F
HG
I
KJ x – 

1

2
2F

HG
I
KJ x + 

1

6

F
HG
I
KJ xex

.

Example – 4 : Solve 
d y

dx
x e xx

2

2
29y sin 2    . Using method of undetermined coefficients for

finding particular integral.

Solution :
d y

dx
y x e xx

2

2
29 sin 2    .....(1)

 S.F. is (D2 – 9) y = x + e2x – sin 2x

A.E. is D2 – 9 = 0  D = ± 3

C.F. = c
1
e3x + c

2
e–3x

Now, none of the terms in X (= x + e2x – sin 2x) is present in in C.F.

 We write the trial solutions corresponding to x, e2x, sin 2x and sum them up.

 Trial solution for P.I.

y
p
 = (A

0
 + A

1
x) + (A

2
e2x) + (A

3 
sin 2x + A

4
 cos 2x)

Differentiate (2) w.r.t.x twice, we get

Dy = A + 2A + 2A cos2 2A sin2p 1 2
2

3 4e x xx 

D y = 4A 4A sin 2 4A cos 22
p 2

2
3 4e x xx  

Substituting in (1) the values of yp and D2yp

4A
2
e2x – 4A

3
sin2x – 4 A

4
cos2x – 9A

0
 – 9A

1
x – 9A

2
e2x – 9A

3
sin 2x – 9A

4
 cos 2x

= x + e2x – sin 2x – 9A
0
 – 9A

1
x – 5A

2
e2x – 13 A

3
sin 2x – 13 A

4
cos2x = x + e2x – sin 2x

Equating coefficients of like terms on the both sides

– 9A
0
 = 0  A

0
 = 0,      – 9A

1
 = 1  A

1
 = 

1

9

– 5A
2
 = 1  A

2 
= 

1

5
,      – 13A

3
 = –1  A

3 
= 

1

13
– 13A

4
 = 0    A

4
 = 0

 A
0
 = 0, A

1
 = 

1

9
, AA

2
 = 

1

5
, AA

3
 = 

1

13
, AA

4
 = 0

P.I. =   
1

9

1

5

1

13
22x e xx sin

 C.S. is y = C.F. + P.I. = c
1
e3x + c

2
e–3x   

1

9

1

5

1

13
22x e xx sin


