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Linear Differenitial Equations
of Second and Higher Order

6.1 : Introduction

Linear differential equations are of paramount importance in the description of physical
phenomena. Many natural processes appear as higher-order linear differential equations, most
often as second-order equations. Second-order linear differential equations arise in many areas of
physics, electric circuits and vibrations etc.

A linear ordinary differential equation of order » has the form.

dny dn—ly dn—Zy dy
a, T +q o] +a, o2 + . +a, a +a,y=X .. (1)
where a;, (£ 0), a;, ay, ............ ,a, 1, a,and X are functions of x only.

If X = 0, then equation (1) is called homogeneous ; otherwise the equation (1) is
nonhomogeneous.

Ifay, ap, ay ... , a, | ,a, are constants, the equation (1) is called linear differential
equation of order » with constant co-efficients.

Note : When n = 2, the equation (1) becomes a second order linear differential equation and it is of
the form

2
aod—;}+a1—+a2y:X
dx dx

where a, (#20), a;, a, and X are functions of x only.

6.2 : Linear Differential Equations with Constant Co-efficients

A linear ordinary differential equation of order » has the form.
dny dn—ly dn—zy dy
ta +.... + -+t =X . (1
4o A" 1 dxn—l Ay dx ay (1)
where a, (#0), a;, ay, ............ ,a, ;,a, and X are functions of x only.
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If X = 0, then equation (1) is called homogeneous ; otherwise the equation (1) is
nonhomogeneous.

Ifay, ay,ay ... ,a, | ,a, are constants, the equation (1) is called linear differential equation
of order n with constant co-efficients.

Note : When n =2, the equation (1) becomes a second order linear differential equation and it is of the
form

02 Ta TR
where a,, (#0), a,, a, and X are functions of x only.
A linear ordinary differential equation of order n with constant co-efficients has the form.

dn dn—l dn—Z d
y+a1 )1}+a2 f+ ................. +an_1—y+any=X (D)
dx" dx"” dx" dx
where ay, a, ............ , a, are real constants and X is a function of x only.

The concept of general solution of the equation (1) requires the idea of linear dependence and
linear independence of functions ; so these ideas are introduced first.

Definition :
A set of n real valued functions y,, y, .... , y, are linearly dependent. (L.D.) on the interval I
(where they are defined) if there exists real constants ¢, ¢, .......... , ¢, not all zero such that
cyp @) Ty () F +c,y,(x)=0forallxinl
These functions are said to be linearly independent (L.1.) on I if the relation
CYIT eyt +¢c,y,=0 forall xel
implies ¢; =cy = .o =c,=
We may test the linear independence or dependence of these functions y, 5, ..ccccccevuneee ,y,byan
elegant tool which is Wronskian determinant.
Definition :

Ifthe n functions y,, y,, .....,y, are each (n — 1) times differentiable with respect to the independent
variable x then the Wronskian of » functions is denoted by W (v, y,, ...... ,¥,) and is defined by

N Voeveveneinnnns Va

W (yl,yz, ,,,,, ,yn) 3 T

-1 -1 —
DGR LRy

2
where primes denotes the differentiation with respect to x. { yi 2@, y; = d Jiz etc}
dx dx
An Example :
Lety, = sinx and y, = cos x where 0 < x < 2r. Here we see that :

¢, sinx + ¢, cosx =0 forallx € [0, 2r] (¢,, ¢, are real constants)



Linear Differenitial Equations of Second and Higher Order

implies ¢;-0 + ¢, 1= 0 (taking x = 0)

. T
and ¢;-1+¢,-0=0 [tak1ngx=5j

from which we getc, =0, c, =0.
Hence the set of functions {sin x, cos x} is linearly independent.
Here we observe that :

sinx cosx

W (sin x, cos x) = =—-1=0forall x € [0, 2]

cosx —sinx|

Now we state the theorem for linear independence.

Theorem : The functions y,, y,, ....... , ¥, will be linearly independent if and only if Wronskian
W (y, ¥3, ey ¥,) # 0 in the corresponding domain.(We omit the proof of the theorem)

In order to solve the equation of the form (1), we first find the general solution of the equation
formed by setting X = 0 in the equation (1).

+a, e S +an_1fl—+any=0 ..(2)
X

To find the general solution of (2), we first find 7 linearly independent functions y,, y,, ...., ¥,
that satisfy it. Now we state the following theorem :

Theorem : Lety,, y,, ....... v, be n linearly independent solutions of (1) on an interval I. Every solution
of (1) can be written uniquely as :
YVo@) =y @) ey () + tec,y,x) L 3)

where ¢, c,, ......, ¢, are real constants (we omit proof of the theorem).

Since ¢, ¢, ......, ¢, are n arbitrary constants and the equation (2) is of order #, it follows that the
general solution of the equation (2) is of the form (3).

Note : The function y,. (x) is called the complementary function (C.F.) of the equatiuon

dn dn—l dn—2 d
y+a1 J1}+a2 g}+ ....... +an_1—y+any=X (D
dx" dx"” dx"” dx
where ay, a,,........ ,a,, are real constants and X is a function of x.

Now we shall discuss the method of obtaining the general solution of the linear differential
equation of order two. We consider the equation.

d’y  dy
+a—+by=0 .. (4
In previous chapter we have seen that the solution of first order linear equation of the form
dy , , ,
P Yy =01isy=e"™ + c (c1is an arbitrary constant).

Therefore we try to find a solution [of (4)] of the form y =- €™*, where m is a constant. Substituting
y=e™in (4), we get (m> + am + b) ™ = 0.
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Note :

(i)

Since €™ = 0, we obtain

m>+am+b =0 .. (5)
This is a quadratic equation in m. The equation (5) is called the auxiliary equation of (4). The
auxiliary equation (5) has two roots m, m, (say). We have the three main cases as follows:

Two roots are real and distinct (m; # m,) : Let the distinct roots of (5) be m,, m,.

Then ¢™* gnd ¢™2* are two solutions of (4). They are linearly independent, since.

mx m)x

e e

myx, mpxy —
W (6 e ) myx myx
me mye

= (my — my) M)

# 0 for all real values of x
Hence the general solution of (4) is

y=ce"" +ce"x
where ¢, and c, are arbitrary constants.
If the distinct real numbers m |, m,, ........ ,m,, are the roots of the auxiliary equation corresponding

to the homogeneous linear differential equation of order n, then the general solution of the equation
is y=ce™ +ce" +.... +c, et .

where ¢, ¢,, ...... ,c, are arbitrary constants.

Two roots are real and equal (m; = m,) : If a,, o be the repeated roots of (5), then

) a
ata =-—-a,ie o= —"_.

2

Here e™ is a solution of (4). Then the solution of (4) can be obtained by setting y = ve® (v is a
function of x). We get

dy dv  d%y {d% dv }
— X —— — ox 4§ — g0 2 _ ax | —— 4+ 20—+ OV
y=ve*, ave e™, e 02 ax .

dx dx 7 dx?
Then from (3), we get.

2
e ﬂ+2a@+a2v +eaxa{va+@}+b\/ew =0
d* dx dx

d*v ) dv 2 b)Y
Or,ﬁﬁt( oc+a)a+(oc +ao+b)" =0

2
or,? =0 [20a+a=0ando?+ao+b=0,since o is a root of (5)]
X

On integration, we have v = ¢, + c,x
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Note :

where c and c, are real constants.
So, if we take ¢; = 0, ¢, = 1, we find that y = x e¢** is a second solution of (3).

e™ xe™*

Now, W(e®, xe®) =
’ ’ ae®™  e* + axe™

= 2% ()

So, {e**, xe®} is a set of linearly independent solutions of (3).
Hence the general solution of (4) is

y=(c; T cyx)e*.
where ¢, and c, are arbitrary constants.

Ifthe order of the equation be three and if the corresponding auxiliary equation has a real double root,
say, o,; and a simple real root ¢, then the general solution will be

y=(c; tcpx) 1 +C3ea2x
Ifthe roots of the auxiliary equation in this case are all real and equal, say, o then the corresponding
general solution will by

y=(c; +epx +c3x?) e*.
where €1, Cp, C3 AIE arbitrary constants.

Similarly we can obtained the general solution of the linear differential equation of order
(>, 4) when two or more roots of the auxiliary equation are real and equal and the remaining
roots (if any) are real and distincit.

Cask (iii) Two roots are imaginary :

Note :

If one of the roots of (4) is imaginary, say o + i} [a, B (# 0) are real], then its conjugate
o — iP is a also a root of (4). Then

y= Cle(oH—iB)x + Cze((x—iB)x
is a formal solution of (3) where ¢, and c, are arbitrary complex constants. Now,

¢, e@TBx 4 o @-iB)x= 0% [(¢ +c) cos Bx + (ic, + ic,) sin x]
For arbitrary real constants A, B we can find ¢,, ¢, such that :

¢, te, =Aandi(c;—c,)=B

L A-iB A+iB

which yields ¢, = 5 and c, = )

Then y = €™ [A cos Bx + B sin x] is a solution of (3) where A and B are real constants and it can
be shown that e™* cos Bx, e sin Bx are linearly independent solution of (4). So, in this case the
general solution is given by

y=¢e" (A cos fx + B sin Bx)
where A and B are arbitrary constants.

If for a linear differential equation of order (<, 4) with constant co-efficients, the conjugate
imaginary roots a + i, o — i3 of the corresponding auxiliary equation are each of multiplicity &,
then the corresponding part of the general solution will be of the form

e [(cptepxt . +ckxk‘1) cosPx+(d; tdyx+..... +dkxk‘1) sin Bx]



Applied Engineering Mathematics — I

L

For example, if the roots of the auxiliary equation of a fourth order homogeneous linear
differential equation with constant co-efficients be 1 + i, 1 — 7, 1 + i, 1 — i then the general
solution will by

y=¢€"[(c; + cyx) cos x + (d; + dpx) sinx]

We now give several examples.

Rules for finding the complementary functions
Working Rule to solve the equation :

n
dx dx
of which the equation is in symbolic form
Dy +kD 'y + ... +ky=X
DO+ kD +k)y=X
fD)y=X
Where /(D) = (D" + kD" '+.....k )
Step —I : To find the complementary function
(i) Write the A.E. /(D) y = 0 and solve it. Let it’s rootbe D = m , m,, ........... m.
Write the complete solution

Roots of A.E.
(1) All the roots m, m,, m, ............ m are real & different.

(2) All the roots m,, m,, m......... m arereal & m =m,
(3) All theroots m, m,, m, .....arereal & m = m,= m..
(4) Two pairs of the roots are complex i.e. m = o + i}, m,= a.— i} & all other roots are real
& different.
Complete sol" :

Freeeerens k,y=X

(1) y=c,e™ +c,e™ +c ™ + e+ c @™

(i) y=(cx+tc,)e™ +ce™ +..n+c, @™

(iii) y=(cx* +tcx+c)e™ +ce™ +........ +c,e™*

(iv) y= e™ (¢, cosPx+c, sinPx)+c;e™ +....... +c,e™*

(V) ¥ = e*[(cx+c,)cosPx +(cyx + ¢y )sinPx]+cse™ + ... +c, e

Illustrative Examples

Example — 1 : Find the general solution of

2
3d—f+zd—y—8 =0
ax? dx
2
Solution : Given 3d—2y+2@—8y e (1)
dx dx

let y = €™ be a trial solution of (1).
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To find C. F.
Then the auxiliary equation of (1) is
3m2+2m—8=0
ie, Bm—-4)(m+2)=0
4
.e., = o 2
ie, m 3
The general solution of (1) is therefore
4
3% -2x
y=o¢qe’ +ce

where ¢, and c, are arbitrary constants.

d’y ,d°
Example — 2 : Find the general solution of —f -3 —f +4y=0
dx dx

Solution : The above equation can be symbolically wirtten as D3y — 3D?y + 4y = 0
To find C. F.
The auxiliary equation of the given differential equation is
m3—3m?+4=0
ie,(m+1)(m—-2)*> =0
ie,m =-1,2,2
Here a root (i.e. 2) is a double root of the auxiliary equation. Thus the general solution of the
given differential equation can be written as.
y=cpe +(cy + ey x) e
where €1, Cp, C3 AIE arbitrary constants.

d'y d°
Example — 3: Find the general solution of —f +8 —f +16y =20
dx dx

Solution : To find C. F.

The auxiliary equation of the given differential equation is

m*+8m>+16=0

ie, (m*+4)*=0

ie, m=%2i £2i

i.e., the roots of the auxiliary equation are 2i, —2i, 2i —2i

Since each paris of conjugate imaginary roots is double, the general solution of the given

differential equation is y = (¢| + ¢,x) cos 2x + (c; + ¢4x) sin 2x where ¢ ¢,, ¢3, ¢, are arbitrary

constants.

d’x _dx dx
Example —4 : Solve the initial value problem, ? +5 E +6x =0, given thatx (0) =0, 5(0) =15,
Solution : We have, (D*+ 5D + 6)x =0, where D = di
t
AE. ism*+5m+6or(m+2) (m+3)=0=>m=-2,-3
Lx=x({t)=ce*+ce™ .. (1)
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This is the general soultion of the given equation.

Now, consider x(0) = 0
(1) becomes, x(0) =c- 1 +¢,- 1

ie.,c, +c,=0 ..(2)
Also we have from (1),
dx .

-2 3
— =-2ce " =3c,e

dt

Applying the condition ?( 0) =15 we obtain,
t
—2¢,-3¢,=15 ..(3)

Solving (2) and (3) we getc, = 15, ¢, =15

2
Thus x(t ) = 15(67% - e&) is the particular solution.

We have dealt with the homogeneous linear equation with constant co-efficients and its general
solution. Now we consider the nonhomogeneous linear equation (1) with constant co-efficients
of order n. The following theorem characterizes the solution of the equation (1), in terms of a
general solution of the corresponding homogeneous equation (2).

d?
Example — 5 : Find the solution of the differential equation 7{ + 4y = 0 given that

T
y(0)=1,y (Z) 1. [B.PU.T., June 2005

Solution : The given equation is

2

d’y
—-+4y =0 ..Q1
d* D

Let y = " be a trial solution of (1).

Then from (1) we get, (m> +4) ™ =0

Since ¢ # 0, we have the auxiliary equation of (1) m? + 4 = 0 which gives m = + 2.
So, the general solution of (1) is

Y =cy cos 2t+c,sin2t e (2)

T
Given conditions are y (0) =1, y (Z) =1

Using given conditions we get from (2),
¢, =landc,=1.

.. The required solution of (1) is

y  =cos 2t+ sin 2¢.
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d'y d’
Example — 6 : Solve ﬁ+8ﬁ+l6y=0
d'y d’
Solution : —3:+8—J2}+16y=0
dx dx

The above equation can be symbolically written as
= DYy +8D%+16y=0

= (D*+8D*+16)y=0

Now AE.=0,=D*+8D*+16=0

= D*+4D*+4D’+16=0

= DD+4H+4D+4)=0 = D*+4)-4D*+4)=0
= D?’+4=00rD*+4=0 =>D*=-4,orD*=-4
= D?=4{2or D* =4 =D=+2iorD=%2i

So the required solution is
y =e" {(c, + c,x) cos 2x + (¢, + ¢,x) sin 2x}
= (¢, + c,x) cos 2x + (¢, + ¢,x) sin 2x
Theorem : A general solution y (x) of the nonhomogeneous equation (1) is the sum of a general solution

¥, (x) of (2) (called the complementary function for (1)) and a particular solution v, (%) of
(1), where

V. (@) =ciy (x)tey, () + +c,y, (x)wherey,, y, ........ .
are linearly independent solutions of (2).
Hence ¥ (1) =, (1) +3, (¥
Remark : y, (x) is also called a particular integral of (1).
We rewrite the equation (1) as

fM)y =X ...(1)
Where f(D) =D" +a D" T+ +a, D+a,(a,a,,...,a,are constants) and D stands for
4
dx

Here /(D) is a linear operation, i.e.,
JD) [ry x) +r, ()] =f(D) [r; ()] +AD) [r, ()]
and f(D) [kr (x)] =kf (D) [r (x)],
where 7, r,, r are functions of x and k is a real constant, /(D) is a polynomial in D with constant
co-efficients and it behaves just an ordinary algebraic polynomial.

We now present an important method, known as the operator method, for finding particular
integral of (1"). Before finding particular integrals of (1") we define the operator inverse to /(D)

1
A

which is denoted by or [f(D)]"". It is defined to be an operator such that
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if and only if [f(D)] v (x) =X (x)

Now we will show that X is a particular integral of the equation (1').

Proof : Substituting lD) X for y in the equation (1'), we find that

1
D)y =f(D) ——X =X
SMD)y =/( )f(D)

We will find the particular integrals of (1') when X has the following forms :
()) X =x" (m is non-negative integer) or any polynomial in x.

(ify X =e*, where a is a constant.

(@i X =sin (ax + b) or cos (ax + b), where a and b are constants.

(iv) X =e* v, where v is a function of x.

(/) To evaluate x™, we can write £ (D) as [f(D)]"' and we can expand it in ascending

powers of D using Binomial theorem.

The terms of the expansion so obtained, each term operates on x” and the final result will be a
particular integral of the equation (1') corresponding to x™. It is obvious that no terms of the
expansion beyond the mth power of D need to retained, since the result of their operation on x™
will be zero (i.e. D"x™ = 0 when n > m)

The same procedure will have to adopted when X is a polynomial in x of degree m.

We illustrate the above procedure by the following example :
6.3 : Solution of Differential Equation f(D)y =X or P.I

We have already discuss from the previous Chapter, that the solution of the equation f{D) y
= X, consists of two parts, namely complementary function and particular integral. The
complementary function for this equation is same as the complete solution of f{D) = 0. The
methods to find complementary functions have already been dicussed. We shall discuss the
methods of finding the particular Integrals.

Particular Integral

The particular integral of the differential equation f{D)y = X is defindas y = ﬁ X (D

Where in general ‘X’ is a function of x, It may of course, be a const. The symbol X,

1
f(D)

is defined as a function of x, which when separated upon by f{D), gives X, in symbolically

1
D) ——X|=X
N )[f(D) }
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Thus the function X satisfies the equation (1) and called particular integral.

1
/(D)
As already pointed, the polynomial f{D), can be subjected to algebraic operations, such as
factorisation, resolutions, in partial fractions and expansions by binomial theorem etc. The
following results are quite useful to find particular integrals.

Results :

1
(1) IfX is a function of x or a const, then BX = _[XdX

1
Solution : Lety= BX operating both sides D
! X
Dy=D D)= X

d
or 2 X, Intergrating both sides w.r.t. x y = [xdx, hence the result.

dx
(II) If X is a function of x or a const, then (D—m) X=e JXe dx
. RS
Solution : Let (D—m) Y

1
(D -m)y = (D —m) ((D_m)X):X

d
or d_y -my=X, Which is linear
X

ILF.= e.l.—mdx _ e—mx

Hence sol" is ye ™ = J‘Xef'mdx

y:e””J‘Xef””dx D%mX = eme.Xefmxdx

1
This formula enables us to evaluate the particular integral WX ,

where (D) =(D—-m ) (D—-m,) ......... (D-m)
1 1

X= e
F(D)" " (D=m)(D=my)ecc D= m,)
Resolving R.H.S. into partial fractions

;Xz 4 + 4 et 4, X
f(D) D—-m D-m, D—m,

= Ae™* J‘xefm‘)C + A,e™* J Xe "™ 4 .. + A4,e™" j Xe""dx
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Particular Integrals in some special cases :

Let us consider the differential equation

O +PD'+PD7+ +P)y=X
where all P’s are constant.

The above equation can be written as /(D) y = X

. . 1 X
particular integral = m
Case—-1:
When X = e~
D(e™) = ae*
D2 (eax) — aZeax

Multiplying in (i) by P, P_.... P, and respectively and adding,
(D*"+PD"'+...P_D+P)le*=(a, +P a'+..P a+P e~
= f(D) e~ = fla)e™

1
Operating both sides of equation (ii) by m

1 ol LT
m[f(D)e |= f(D)[f(a)e JI

S
 fla) f(D)

Which gives the particular integral of e*
In case X = K(a const) then
1 1 0.x

k
/) rm T fmy
Case of Failure : If fla) = 0, the above method fails and we proceed as under.
Since fla) =0
D=a,isarootof f{D)=0........ (1)
(D — a) is a factor of f{D), Suppose f{(D) = (D — a) f'(D). where f'(a) # 0

provided f{0) = 0

PSS SR NP SR R
Then %) “D=a ()¢ ~D-a f'(a)
~ 1 1 o — 1 o Jeax o iy
“ @ D-a° " [ o
— ! e“XJ.dx =X ! e™
7'(@) (@)

Applied Engineering Mathematics — I
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1 1
D T @
[ f'(D)=(D—a)f"(D)+1-f(D)}

v f(@)=0 f"(a)+ f(a)
If f'(a) = 0, then applying (2) again
1 2 1
veet i) T @

and so on,
In general if D = a, is a repeated root of f{D) = 0, say (r + 1) times,

ax

ax

............ (2) (' (a) # 0)

€ provided /"(a) # 0 ........ (3)

1, x'.e )
we have f(D)e _fr(a) f(@)#0

Rule -1 :

1 o«
To find the P.I. me , replace D by a, provided f(a) # 0, In case fla) = 0 multiply the

nuemerator by x and differentiate the denominator w.r.t. D and apply the above rule, provided
f'(a) # 0 and so on.

Example — 1 : Find the particular integral in the solution of (D? + 16)y = e¢*-.

Solution : P.I.:( ! )e“

D* +16
= L . 641):
(_4)2 16 (Replacing D by — 4) = 3

Example — 2 : Solve (D — 2)%y = e?*,
Solution : The auxiliary equation is (D — 2)> = 0. Hence D = 2, 2
s CFE=ecx+c)

1 - x2e2x
Pl = e = Y,
(D-2) :
xZ 2x
ny=CF +PL=e(cx+c) + -

Example — 3 : Solve (D2—4)y = e* + ¢,
Solution : The auxiliary equation is D*— 4 = 0.
Hence D = 2, -2.
S CF=ce*+ce™
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X _ 1 2% Ay :( 1 )eZ)c +( 1 )e4x
PI_(D2_4)(e +e ) D2_4 D2_4

—4x —4x
— ; er+ € :l 1 er_l_e :lx82x+ie4x
(D+2)(D-2) D-2 4 '

The solution is y = C.F. + P.I.

1 _
Py xet v —e
4

. 2x -
SLy=ce tge .
12

Case—1I:
When X = sin (ax + b) or cos (ax + b)
D sin (ax + b) = a cos (ax + b)
D? sin (ax + b) = — a* sin (ax + b)
D? sin (ax + b) = —a® cos (ax + b)
D* sin (ax + b) = (—a?)? sin (ax + b)
2. (D?)? sin (ax + b) = (—a?)" sin (ax + b)
= f(D? sin (ax + b) =f(—a?) sin (ax + b)

1
operating both sides by m
1 1
m . f(D?) sin (ax + b) = m . f(—a?) sin (ax + b)

1
2~ sin (ax + b) = ;sin(ax +b) provided f(—a*) = 0
(D) f(=a®)

Case of failure :
In case f'(—a*) = 0, the above method fails and we proceed as under we know
'@ b = cos (ax +b) + i sin (ax + b), since f'(—a*) =0
) X ei(aerb)
[cos(ax +b) +isin(ax +b)] = —————  provided f'(—a?) # 0,

f'(=a*)

1
/(D)
1
—————x[cos(ax + b) +isin(ax + b
g Yeos(ar + ) +isin(ar +5)
Equating imaginary parts

1 x
———-sin(ax +b)=—————sin(ax +b)
f(D?) f1(=a®)

;cos(ax +b)= Lcos(ax +b)

If real parts are equated then (DY) (=)

In case f'(—a?) = 0, the P.I. is obtained by repeated application of above rule as follow.
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sin(ax + b) = —— sin(ax + b)

1
f(D?) f'(=a”)

;zcos(ax +b)= %cos(ax + b) and so on
f(D7) f'(=a”)
Rule -2 :

1 1
To find the P.I., m sin (ax + b) or m cos (ax + b), replace D? by (— a®) provided

f(=a*) # 0, In case f (—a*) = 0, multiply the numerator by x and differentiate the denominator
w.r.t. D and apply the above rule provided /' (—a?) # 0, and so on.
Note : In case f(D) contain terms such as D* or D’ etc. replace by —a* D and a*D respectively.
Example — 1 : Solve (D?+ D + 1)y = sin 2x.
Solution : The auxiliary equation is D>+ D + 1 = 0.

- (D;—S) sin2x = ( ((DDZ +_39))]sin 2x

~ (D+3) 2cos2x 3sin2x

sin2x =-— -
-13 13 13

.. The general solution is y = C.F. + P.I.

Example — 2 : Evaluate the P.I. = 21 (4sin3x)
D* +9

4
ion « P.l.= sin3x
Solution : ( D+ 9)
ﬂ;f(—az) =0,i.e D* = -3’ cases failure;ﬂ

x4 .
=——sin3x
2D

= ZxJ sin3xdx = %cos 3x
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Example — 3 : Solve (D? + 9)y = cos 3x.
Solution : The auxiliary equation is D>+ 9 = 0.
Hence D = + 3i.
. C.F. = ¢,cos3x + ¢ sin3x

1
P.I.=( 5 )cosSx
D" +9

[Here f'(—a?) = f(-3%) = 0, cases failure]
= icos 3x
2D

x sin3x x .
=—- =—sin3x
2 3 6
Case — 111

When X = x®, where m > 0,

1
Here P.1.= 7(D) x"= [f{D)] x™

Expand [f(D)]" in assending powers of D as far as the terms in D™ and operate on x™ terms
by term. We need not retain terms D™, D™*2 etc. because D™!(x™) = 0 = D™?2(x") and so on.
Binomial expansion of any order

When x is (—ve) or a rational number (1 +x)"=1+nx +———— X +........ x4

n(n—-1)(n-2)...... (n—r+1)x,

r+1 r!

A+x)t=1-x+x2—x+....
(1-x)'t=1+x+x2+x>+.....
(1+x)2=1-2x+3x*—4x*+ .......
Example — 1 : Solve (D?+ 1)y = x.
Solution : The auxiliary equation D* + 1 =0
- D==+i. Hence C.F. = ¢, cosx + ¢, sinx.

.'.P.I.:( 21 )x
D +1

=(1+D%)x

= (1 — D?x (using binomial expansion)

=X.
.. The general solution is y = C.F. + P.I.

Sy =c¢, cosx+csinx+x.
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Example — 2 : Solve (D?+ 3D +2)y = x2.
Solution : The auxiliary equation is D*+3D +2 =0
S~ (D+2)(D+1)=0. Hence D =-2, 1.

S CFE=ce*+ce™

1
T
D +3D+2
2\~ 2 2\?
_Ufy 3007 L) 3D DT 3DHDT ) o
2 2 2 2 2

2
S Do R | (N
2 2 4 2 2)

.. The general solution is y = C.F. + P.I.
Example — 3 : Find a particular solution of y”/+y =x3.

Solution : The given equation is
D> +1y =x°

d
where D stands for —.

dx
1 3
.. A particular solution of the given equation is DI+1 X
— (1+D?)1 3
=(1-D*+D*—........ )x3
= x> —6x

Case-1V:
When X = e* V, where V is a function of x.
D(e*V) = e“DV + ae”™V
=e*(D+a)V
D*(e“V) = D[e(D + a)]V =™ (D* + aD)V + ae*(D + a)V
=e* (D’+2aD+a*)V =e*(D+a)V

[B.PU.T, 2006

Thus we see that D on the L.H.S. is replaced by (D + @) on the R.H.S. and e* proceeds

(D+a)
5 f(D) [e*V)] = e“f (D + al)V
Operating both sides by m

1 1
7(D) J(D) [e*V] = 7(D) [e“f (D + a)V]
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or e*V=e*~
Letf(D+a) V=V,
1

L/

f(D+a)
substituting the value of V in eq" (i)

1 1
e” Vi=
f(D+a) — f(D)

Now V| = f(D + a) V, is a function of x, replacing V by V,

f(D+a)V ... (1)

or V

(e“N)

1 ax _ax 1
We get —f(D)[e Vi=e —f(D+a)V

1 1
e —[e*V]=e———V
Hence P.1. f(D)[e l=e f(D+a)
Rule -3 :

1 a 1
To find P.I. m[e V1replace D by (D + a) and write it as e""m V', and apply the

rules stated above, depending upon the nature of the function V.
Example — 1 : Find the P.I. of (D>—4D + 3) y = ¢* cos 2x.

1
ion . = | ————|e" cos2x
Solution : P.I. (Dz —4D+3)

) {(D+ 1) —4(D+1)+ 3JCOS2x

e’ e*
= [mjcoﬂx = (_4 — ZDJCOSZX

__1 e cos2x __¢ (D=2 cos2x
2l D+2 2\ Dp?-4

_ _i[(D—Z)cost}

2 -8

X

= f—6(—2 sin2x —2cos 2x)

X

= —%(sin 2x + cos2x) .
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Example — 2 : Solve (D?-2D +2) y = ¢* sin x.
Solution : The auxiliary equation is D>~ 2D +2=0. Hence D=1 *i.
. C.F. = e¥(c, cosx + ¢,sinx)

X

1

PI.= [m} (" sinx) = {(D+ 1)* -2(D+ 1)+2]Si"x
= {DS+ 1}sinx = l:m} sinx

1 ix
= ¢* Imaginary part of {(DT} €

)(D-i)

1 ix
= ¢*Imaginary part of [2_1 xe }

1. .
= ¢* Imaginary part of —Elx(cosx +1 sznx)}

=——xe” cosx
2

eX
(02 + 1)

[Here /' (—1)* = 0 cases failure.]

Alternatives P.1.=

sinx

X

2D
.. The general solution is y = C.F. + P.I.

. -X .
Sinx 276 COS X

Case-V:
When X is any other function of x.

b5

f(D+a)

IffiD)=[D-m) ... (D —m,), resolving into partial fractions

1 4 A, A

= + Foeennn "

f(D)y (D=m) (D-my) (D—m

Here PI. =

Al Az A
= + T t———-X
(D—my) (D-m,) (D-m
! X+A2;X+........+AH—X
(D—m) (D—my) (D—-m,)
:Ale’"li‘Xefm‘de + Aze”12XJX67”12X+

PI

:Al
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/
Theorem, If V is a function of x

1 1 1
then —, - xV = 4{ d }V

OO M RN
Example — 3 : Solve (D3-3D?+3D -1) y = x?%¢".
Solution : The auxiliary equation is D* -~ 3D*+3D—-1=0
(ie)(D-1y=0
- D =-1 (thrice).
s CFE =e"(c, +tcx+cx).

1 2 x
. = x-e
- PL (D3—3D2+3D—1)

:{(D+1)3 ~3(D+1)° +3(D+1)—1Jx2

= 66)(; (By integrating x* thrice w.r.t. x)

.. The general solution is y = C.F. + P.I.

5 x

60 -

. — 2
Ly=et(e, textex’) +

Illustrative Examples

Example —1 : Find the general solution by using substitution. y" — 8y =0

Solution: Herey” —8y=0 which is a 2nd order homogeneous differential equation
= m*e™ —8e™ =0 Let y = ™ be the required solution.
= (m*-8)e™ =0 =y =m™ andy" = m*e™
.. The auxiliary eqution is
m~8=0 (e™ #0)
> m>=38

=m=+ 2\/5 are two real and distinct roots.

- The general solution is y = c;e™" + c,e™"

V2.

* czefzﬁx

= y=c¢e
Example — 2 : Solve the initial value problems y" —y =0,y (0) =3,y’ (0) =-3
Solution : Here y" —y =0, y (0) =3, ' (0) =-3
which is a 2nd order homogeneous differential equation
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=™ —e™ =0 Let y = e™# 0 be the required solution.
= (m>1)e™ =0 =y =m-e™ andy" = m*e™
So the auxiliary equation is
m*—1=0
= m = £ 1 are two real and distinct roots.

myx

.. The general solution is y = c,e™" +c,e

=Sy=ce +e (1)
= y':clex —cze_x .......... 2)
Given y(0)=3ie. forx=0,y=3
. equation(1) ¢, +¢,=3 . 3)
y'(0)=-3ie forx=0,y'=-3
.. equation(2) ¢, ~c,=-3 ... 4)

.. equation (3) + equation (4) = 2¢,; =0 :>| =0 | :>| c, =3 |

. equation (1) = y=-3¢™* which is required particular solution.
Are the following functions be linearly independent of dependent on the given interval of
the following examples.
Example — 3 : (a) x°, xX’Inx (x>1) (b) sin 2x, cosxsinx (x <0)
Solution : (a) Let, v, =x%Ly,=x Inx (x 21)

. Y2 Y2
Since y = [nx (except for x =1) = == # constant.
1

M
Hence y,, y, are linearly independent.
Note : The concepts of linear dependence and independence of functions refer to an infinite set (the
points of I) but not merely to a single point.

(b) Let, y,=sin2x,y,=cosx sinx (x <0)

Yy
Since = 2 for all x < 0.
B %)

Hence y,, y, are linearly dependent function.

Verify that the given function is a solution and derive the corresponding real general solu-
tion of the following examples.

Example —4: (a) y=c,e”™+c,e”™, y+47xy =0 (b)y =c,e™ "+ c,e " y=+ 2ky’+ (k* +4)y =0
Solution : (a) Let, y=ce™+ce?™, y+4my=0...... (D
which is a 2nd order homogeneous differential equation
Lety = e™ =0 be the required solution.
=y =me™ = )" = mle™
.. equation (1) becomes m?*e™ + 4m’e™ = (
= (m? + 4n?)e™ =0
So the auxillary equation is
m?+41*=0
= m=* 2mi are two complex and distinct roots.
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. The general solution is y = ¢,e™” + c,e

myx

2mi i
= (cle ™ e m)

(b) y = cle(fk +2i)x cze(fkfzi)x’ y”+ 2ky /4 (kz +4)y =0
which is a 2nd order homogeneous differential equation
= m*e™ +2 kme™ +(k* + 4)e™ =0 Lety = e™> 0 be the required solution.
= (m*+2 km +k* + 4)e™ =0 =y =me™
="' =mPe™
So the auxillary equation is
m?+ 2km + (k* + 4) =0

2k ++4k* —4k* -16
m:

2

_ 2k+4i
2
= m= —k £ 2i are two complex and distinct roots.

=—k+t2i

. The general solution is y = c;e™" + c,e™*

(—k+2 —k=2i)x

iy c2e(
Find a real general solutions of the following examples.
Example —5: D —4; 3x° + 4x, 4e*, cos2x — sin 2x
Solution : D —4; 3x? + 4x, 4e*, cos2x — sin 2x
(i) Ley =3x+4x
=Dy =6x+4
5. (D—4)y, =Dy -4y =6x +4—4(3x" + 4x)
=6x+4—12x>— 16x = —12x? —10x +4.
= (D -4)(Bx*t+4x) =4 —10x —12x2
(i) Ley,=de*
= Dy, = 16e*
5 (D—-4)y,=Dy,~4y, = 16e* —16e* =0
= (D —4)4e*=0.
(iii) Ley,=cos 2x — sin 2x

= y=ce

= Dy, =2 sin 2x — cos 2x
s (D-4)y,=Dy—~4y,
=-2 sin 2x — 2 cos 2x — 4 cos 2x + 4 sin 2x
=2 sin 2x — 6 cos 2x
= (D —4) (cos 2x —sin 2x) = 2 sin 2x — 6 cos 2x.
Example — 6 : Solve, (D> —4D + 3) y =sin 3x. cos 2x
Solution : (D? —4D + 3) y =sin 3x . cos 2x
For finding out C.F.
It'sAE.,D*-4D+3=0
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= D’-3D-D+3=0=D(MD-3)-1(D-3)=0
— (D-3)D-1)=0 =D=3,1
Hence, C.F. = C "+ C e

sin3x.cost_l(sin5x+sinx)_l[ sinSx | sinx }
D*-4D+3 2 D*-4D+3 2| D*-4D+3 D’-4D+3

1
PL=—(PL+PL,)

P.I, = 2sm5x _ sin5x (‘.‘D2=—25)
D°—-4D+3 -22-4D

_ (4D +22)sin5x  (-4D+22)sin5x
~ 16D*—484 —884
1

=_ ——(-4x5cos5x +22sin5x) = 2 x (10cos5x —11sin5x)
884 884

= L(100055)c—llsin5x)
442
sin x B sin x _ (2+4D)sinx
Pl = D Z4Dp+3 —1-4D+3 (2+4D)(2-4D)

_ (2+4D)sinx  (2+4D)sinx
~ 4-16D7 20

2 . 4 1 . 1 1 .
=—s8InX+——Cosx =—sinx +—cosx = —(sinx +2cosx)
20 20 10

[ 1 ) |
= —| ——(10cos5x—11sin5x)+—(sinx + 2cosx
Hence P.1. 2[442( X ) 10( )}

= L(100055x—115in5x)+2—10(sinx+2cosx)
CS.isy=C.F.+PL
1 1
= y=Ce*"+Ce+ 284 (10cosx — 11sin5x) + 2—0(sinx + 2¢os x)

2
Example — 7 : Solve, d—J; + Sﬂ +6y=e?* +sin2x
dx dx
Solution : The given equation is in symbolic form
(D?*+ 5D + 6)y = ¢ + sinx
It'sAE. D°+5D+6=0=D+2)(D+3)=0
=D=-2,D=-3
CE=C e*+Ce™



Applied Engineering Mathematics — I

1 1 —2x

—2x . .
Pl =——7—"|e€ +Ssinx| =————e +————SInx
D2+5D+6( ) D*+5D+6 D*+5D+6
1 —2x 1 . 1 —2x .
="+ —sinx =x- e+ sinx
4-10+6 -1+5D+6 2D+5 5+5D
(cases failure)
X Ix S_SD .
= e+ S sinx
—4+5 25-25D
_ 5(sinx —
= xe 2 + >—3D sinx = xe > +M =xe & +—(sinx - cosx)
25+25 50 10

_ 1
CS.ie.y=C, e+ Cre ™ 4 xe +E(sinx — cos x)

Example — 8 : Solve, (D*-D)y =2x+1+ 4 cos x + 2¢*

Solution : (D* —D)y=2x+ 1+ 4 cos x + 2¢*
For finding out C.F. it’s AE.is, D°-D=0=D (D*-1)=0
— DMD+1)(D-1)=0=>D=0,-1, 1
Hence C.F.=C, +C,e*+ Cef

_ 2x+1+4cosx +2e"

PI

D'-D
2x 1 4cosx 2e*
=3 T3 T3 T3
D -D D -D D -D D -D
=PI +PIL +PL +PIL,
2x 2x -2 X 2 _
Pl.="—3 = 2 = 2 =__(1_D2) 'x
= D'-D D(D*-1) D(1-D*) D
2 o 2, R E
= (4 D*+ D )x_—B(x)_—zjxdx _ 2[2 - x
1 1 x° 1 x°
PI.

2= (D°-D) D(D*-1) D(D*-1) D(D*-1)

1 _ 1
—5(1—1)2) 'x? == (1D + D)y

= —onz—iXIZ—dez_x
D

D
4cosx 4cosx COSX .
PI.="73 = 2 =4 =-2sinx
3 D'-D D(D"-1) -2D
plL——2¢ __5 ¢

* DP-D TD-D
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Hence case of failure occures

eX eX .
—— =2x—=xe
3D -1 2
PL =PI +PL +PL +PI,
=—x?—x—2sinx + xe*
=—(x2+x) — 2 sin x + xe*
Henceis y=C.F. + P.I
=y=C+Ce*+ Cetxe’ — (x> + x) - 2 sinx
4
Example — 9 : Solve % — y = cosx.coshx

So, PI, =2x.

4
Solution : d—i}— y = cosx.coshx
dx
The above equation can be symbolically written by
(D*—1)y=cos x. coshx
For finding out C.F. it’'s A.E. is, D* =1 =10
= O*+1HD*-1)=0=> D==+i,+1
Hence C.F.=C cosx +C,sinx+ C,e' +C,e*

e +e”
cosx.
cosx.coshx 2

D* -1 D* -1

1| e*cosx e *cosx
4 + 4
D" -1 D" -1

1
= [P.Ly+P.L,]

2
e*cosx . cosx . cosx
PI. = 4 =e. 4 =e . ) 7
LD -1 (D+1)"—1 (D" +2D+2) D" +2D)
. cosx . COSX . cosx e
=e. =e'.———=¢". =—cCosx
(2D+1)2D-1)  4D*-1 -5 -5
e’cosx . COSX e " cosx ,X cosx

PL,="pi1 ¢ '(D—1)4—1Z(Dz—zD)(Dz—sz)e (=2D+1)(-2D-1)

—X

-x cosx _x C0sx _e
(1-2D)(-2D-1) 4D° -1 -5

1| e e’ cosx| e +e " 1
-+ Pl = =|—cosx+——cosx | = =——cosx.coshx
205 -5 2 5

COSXx

.. Hence C.S.isy=C.F. + P.I.

1
=y=C,cosx+C,sinx+Ce +Ce™ - gCOSX'COth
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Example — 10 : Solve d—J; - ZQ +y=xe"sinx .
dx dx
Solution : Given equation in symbolic form is (D*— 2D + 1) y = xe* sinx
AE. isD*-2D+1=0o0or(D-1)*=0sothat D=1, 1
S CE=(c, tex)e

1
P.l= e’ -xsinx=¢e"- xsinx _ x 1 S :
(D—1)2 (D+1—1)2 =e szsmx—e Dstmxdx
Integrating by parts = e" %{x(— cosx)— Jl(— cos x)dx}l =e" %(—x cosx +sinx)

= eXJ-(—x cosx +sinux)dx = ex[—{xsinx - J-l -sinx dx} - cosx}

= ¢* [-xsin x — cos x — cos x] =— e* (x sinx + 2cosx)
Hence the C.S.isy = (¢, + ¢,x) e —e* (x sinx + 2 cos x).

d? d
Example — 11 ; Solve the differential equation E{ - 4Ey +4y =¢*cosx. [B.PU.T.— 2004

Solution : The given equation is

d’y ,dy

S5-aigy - ¢

2 e V e cos x (1)
The corresponding homogeneous equation of (1) is

d’y ,dy

SLa%44y o 2

dx’ dx g @

The auxiliary equation of (2) is

m*—4m+4=0

or, (m—2)>=0 or, m=2,2

So, the complementary function of (1) is

y.=(c; + ¢y x) e ...(3)
where ¢; and ¢, are arbitrary constants.

The nonhomogeneous part of the equation (1) is €* cos x which is not in the complementary
function y,.. We also note that the successive derivatives of e* cos x are linear combination
of €' cos x and €* sin x.

Thus we assume a particular integral of (1) as.
Yy =Aeé cosx+ B e*sinx.
where A, B are arbitrary constants to be determined , such that Yy satisfies the given eq" (1).

. dy
Now, y, :d_p =Ae* cos x — Ae* sinx+ B e* sinx + B e* cos x.
x
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2
d Vp
dx?
=-2A ¢ sinx+ 2B ¢e* cos x.

and y;, =

Substituting the values of Vs y;, and y;, in (1), we get

—2A& sinx+2Be“cosx—4 (Aefcosx—Ae sinx+ B e sinx + B e* cos x)
+4 (A e° cos x+ B ¢*sinx) = ¢e* cos x.
or, 2A e sinx—2B e cosx=e"cos x.
Equating the co-efficients of similar terms from both sides, we get
1
2A =0and-2B=1 .‘.A=0andB=—5
L
So, y,= > e sinx
Hence the general solution of (1) is
y=y.ty,

i 1 .
ie,y=(c;+cyx)e —Eex sinx .

6.4 : Solution of Linear Equations by Reducing the order
We consider the general nth order linear differential equation :

n n—1 n-2

d’y y y dy

+a(x +a,(x F o +a,_(x)—+a,(x)y=X(x) .. (1
a0 (), () =X @) )
where a; (x) (i=1,2, ...... , n) and X are functions of x. In the preceeding sections of this chapter
we have developed a theory for the solutions of the linear equation (1) when a, a,, ....... , a, are

constants. But the method depends on the knowledge of n linearly independent solutions of the
corresponding homogeneous equation.

dny n—ly n=2 d

¥ +a,(x) o +a,(x) dxn_;} S SR +a,_ (x)d—i +a,(x)y=0 ...(2)

But, if a;’s are arbitrary functions of x, then no general method can be suggested for finding
general solution of (1). In this section, if one particular solution of (2) is given, then there is a
technique for finding a second independent solution. This technique reduces the given equation
to a linear equation that is one order lower than the original. This method is especially useful
when the given equation is of second order. For, in that case, the reduced equation is a linear
equation of order one which is outrightly solvable.
Let us consider the second order linear equation.

LY aw@ibwy  -xwm .0

2 pm y =X ) ....(3)

We suppose that y = u (where u is some function of x) be a solution of the reduced equation.
d’y  d
LraPaby =0 L@

dx? dx
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We set y = uv in the equation (1) where v is a function of x.

N ok dd dx dx

- . dy d’y
Substituting the expressions for y, E and F in (1), we get
x

d*v du dv [ d*u du
V—>+|2—+au |—+|—5+a—+bu |v =X

dx? x dx | dx? dx
d*v dv
or, ;4‘6115:)(1 . (@)
2 di X
where a, = 22 and X, = —
u dx u
d’u  du . . .
and — +a——+bu =0, since u is a solution of (2).
dx dx
_dv
Putting — = win (4), we have
dx
dw
I +a,w =X, .5

which is a linear equation in w of first order. An integrating factor of (5) is

d X

- 2 Jadx - = dx

dx {wu ej } u uzeja
Integrating, wuzeja “ooAs Iu X eja * dx

W
Since v= ——, we have
dx

v=B+A ie_JadxabhL ie_Jadx uxejadxdx dx
2 2
u u

where A and B are arbitrary constants.
Hence the general solution of (3) is
y=uv.

=Bu+Au J‘uize_Jadx dx+uj‘{ui2e_1adx quejadx dx}dx

where A and B are arbitrary constants.
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Note : Some solutions of the homogeneous linear equation.
d’y dy . ‘
-5 ta—+ by =0 (a, b are arbitrary functions)
dx dx
Can be determined by inspection. They are :
()) y=xisa particular solution if a + bx = 0.
(i) y=e"isaparticular solutionif 1 +a+b=0
(iii) y = e is a particular solution if 1 —a + b= 0.
(iv) y=e™ is a particular solution if m* + am + b = 0.
Example — 1 : Using the method of reduction of order, solve the following differential equation
(1-x%)y" —2xy" + 2y = 0. Given that y; = x is a solution.

@
dx
We first observe that y, = x satisfies the equation (1). We set y = vx in the equation (1) where v is
a function of x.

d2
Solution : (l—xz);;v—bc +2y =0 (D)

Th Q—vﬂcﬂ dﬂ=xd—zv+2ﬂ bstituting th ions fi Y dd—zy
cn dx dx an dx2 dx2 dx Suonsti ll'lg eexpressmns ory, d)(,‘ an dxz

in (1), we get,

2
(1—x2)[xd—:+2ﬂj—2x[v+x§j+2vx =0

dx dx X
d*v dv
x(1-xH)=—+2(1-2x*) ==
or, x( )dx2 ( )dx 0
2 21-2x2
d’v ( )ﬂzo (2

dx? x(l—xz) dx

W tdv
eput — =
P dx "

Then the equation (2) becomes

@+2(1—2x2)

u—
dx x(l—xz) 0 (x#0,1)
which is a linear equation in u of order one.
du  2(1-x*—x* du (2 2
or, _u+—( al zx)dx=0 or, —u+£—— xzjdx=0
u x(1-x7) u x l-x
Integrating,

logu+logx*+log(1-x*) =logc,,
where ¢, is a positive arbitrary constant.

__a ﬂ_#{. _dv}
B TR0 T 2= U a
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1 1
or,dv= ¢ [—2+—2j dx
X

X 1-

_ 1 1 1-x
Integrating, v= ¢ | —+—log|——
x 2 I1+x

Hence the general solution of the equation (1) is

X
j"‘Cz.x

1+x

j +¢,, (where ¢, is an arbitrary constant)

1
y=c; (—1+5x10g

Example — 2 : Solve the equation (x — 1) y”’— xy’~+y = 0 by reducing the order using y = e* as
one of the solution. [B.PU.T., 2007
Solution : The given equation is
d’y _dy
x—D)—=—-x—+y=0 e (1
(x=1) PRI (1)
We note that y = ¢* satisfies the equation (1). We set y = €* v in the equation (1) where v is a
function of x.
N & =é* Jré‘ﬂ dd—zy—e" +2e"ﬂ+e"d—2v
ow, - v 2, an 12 v I e
ly *y
Substituting the values of y, —— and —- in (1), we get
dx dx

X L av xdzv N L dv X
(x=D|ev+2e—+e —5 |—Xlevte —|-ev =0
dx dx dx
d*v dv
o, (x=De'=——=+(2xe"-2¢" —xe')—+(xe'v-e'v-xe'v+ev) =0
dx dx

2

Ldv L dv
or, (x—l)e ?+(x—2)e a =0
Py ox-ddv o dw w2y
o dx?  x—1dx O x—1 P WHETEW =
-2
or’@-i-x dx =0
w o xX-—
or, @+(1—Ljdx=0
w x—1

Integrating, logw+x—log(x—1) =logc,
where ¢, is a positive arbitrary constant.
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=-x or, w=c¢;(x-1)e™

or, 10 -
¢ a(x=1)

y
or, ot x—1e*

or,dv=c; (x—1)e*dx
Integrating, v=c, (—xe*+e*—-e*)+c,
where ¢, is an arbitrary constant.
Hence the general solution of (1) is y = ve".
ie, y=—cix+tc,e.
where ¢; and ¢, are arbitrary constants.

6.5 : Cauchy-Euler Homogeneous Equations

Equation Reducible to linear equations with constant co-efficients

A.  Cauchy’s homogeneous linear equations :
A linear differential equation of the form

ny X dnfly
e
x“d —+ax W+ ....... +a,y=X (D)
ie. xD'+ax"'D 1+ ta)y= ...(2)
Where a, a, ........ a, are constants and X is either a constant or a function of x only is called

a homogeneous linear differential equation. Note that the index of x and the order of derivative
is same in each term of such equations .These are also known as Cauchy Euler equations.

2 n

d d
Where D stands for —, D* for —5 ..... D~ for
dx dx

Working Rule for finding solution of (1) or (2).
To solve (1) or (2) , we generally change the variable x to ¢, by putting x = ¢/, i.e.

t=logux, i.e. e°¥=x

dt 1
t=1 —_—=—
ogx, =" 3)

b _dvdi _1dy )
de dt dx x dt @)

dy dy (d dy

—_ =, —:D — =

xdx " (dt j or, x— - Dy ...(5)

: ﬁ_i(ﬂ)_i(iﬂ)
Again 3 = e )T an\x dr

+li(ﬂ) __1ld ldfdy)adr
x> dt xde\ dt x> dt xde\dt ) dx
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Ady 1dy 1 dy | &y 1(dy dy
x2dt x df* x 2dt X2 d? X

x A di
Ty _dy & _ 2 pyy-po-1y (©)
dxz dtz dt y y ..............
and so on. Thus we have the following formulas.
d d?
X—ysz’ xz—J;:D(D—l)y or )CZDZZD(D—I)
dx dx

2

or,

3
x3% =D(D-1)Y(D-2)y or xD'=DD-1)D-2)
X

x"d—;V:D(D—l) ......... (D—n+1)y
dx

Using (3) and (6), the given equation (2) becomes f{D) y = T, where T is now a function of
t only.

Now D, D°........ etc will stand for diffferentiation once, with respect to t and so on; similarly
1 1
DD will mean integration once twice with respcet to t and so on.
Legender’s Linear Differential Equation:
) dny dnfly
An equation of the form (ax + b)" e +K, (ax + by o] + ... ky=X
X

Where k’s are constant and ‘X’ is a function of x, is called Legendre’s linear equation.
such equations can be reduced to linear equations with constant cefficients by putting

t
e —-b
a

(axt+b)=¢é,t=log(ax +b),ax=¢-b=>x=

d2
dx{ =a’D (D- 1)y and so on.

d
ic. (ax +b) d—i — a Dy, (ax + by

3

(ax +b)’ % =a’D(D-1)(D-2)y and so on.
X

d'y k ,.d"" k,, dv k t=b
pEX LY e t—y+—ny=inF( )

dt" a dt a dt a a a
For example, we consider the equation

d* d
(Gx + 22 d—f+3 Gx+2) Ey 36y =32+ 4+ 1
X

Letusput3x+2 =t
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dy dydt _dy d*y d( dyj
Then — = —— =3— and —5 =— 3—
N T awrar Sa ™ T wCw
_ &y dt
dt* dx
oy
dt*
.. The given equation reduces to
2 2
P9 LDy, :1{(ﬂ) +4[ﬁ)+1}
dr?  dt 9 (L 3 3

which is an equation of Cauchy-Euler type and so it can be solved by the method given in
section

Considering a Cauchy-Euler equation of order two in the following example we illustrates
the above method.

Illustrative Examples

d’y  dy ‘
E le—1: Solve x’—= —2x—+4y=x
xample olve P i ly
2
Solution : xzd—{—2xd—y—4y:x4
dx
d dy dzy
=e¢t D=— x—=Dy x>*>2=D(D-1)y i
Putx =¢, e xdx V., X I ( )y in (1), we get
D(MD-1)y-2Dy—-4y=¢"or (D>~ 3D —-4)y=¢*
AE. D>-3D-4=0=>D-4)D+1)=0=>D=-1,4
CF. CE=Ce'+Cge"
PL P.I= Z;e"’
D" -3D—-4
=t ! e’ =t ! e4’=te4t
2D-3 2(4)-3 5

Thus, the complete solution is given by

1
_ 1 -
y=C - +Cx¢ +5 x*logx.

X
d’ d’y d
Example — 2 : Solve, xzdx—J;Jr 3xdx—f+ay = x’logx
3 2
. 3X ) 2d%y dy 3
Solution : x _dx3 +3x _dxz +xd—x=x log x
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Let x = ¢ so that z = log x, Dzdi
zZ

The equation becomes after substitution
[D(D-1)(D-2)+3D(D-1)+D]y=ze*
or Dly=ze*
Auxiliary equation is D3 =0, or D=0, 0, 0]
CF=C +Cz+Cz2=C, +C,logx + C,(logx)’

D’ '(D+3)3
-3 3z
:e3zi(l+gj z=% (l—D)z
27 3 27
e3z x3
= —1) =2 (logx -1
77 (F 1) =7 legx=1)

3
Complete solution is y = C, + C, logx + C,(log x)’ +)2C—7 (logx — 1)

d’ d
Example — 3 : Solve 2x + 3)* E{ -Q2x+ 3);}) -12y=6x

2
d
Solution : (2x +37 L —2x+3)? _12) = 6x
dx dx

t

Let2x+3=¢ =2vr=¢'—3 = x= — then log (2x + 3) =1

dy dy dt dy dy 2
—_ =X — — = —
weknow that - =" >0 = = s

dzy

dx2
Hence the above eq” can be written as,

d
— (2x+3) d—z — 2Dy and 2x+ 3P <L =D - 1)y

e -3
[4D(D—1)—2D—12]y=6[ > J

For finding out C.F. it’s A.E. is, 4D* - 6D - 12 =0

oo 6%4228  6£2V57 34457

8 8 4

34457 ) [ [37«/5\
4

_ ,
Hence C.F. = ce 4 tepe J
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1
Pl=————3(e'—
4D’ _6p_12 €3
I3 t
3
PL,=3. —5— -3 -
AD’—6D—12 ——14 14
-9 9 3
PI

2T 4D’—6D-12 12 4
Hence C.S.isy=C.F. + P.L.

344/57 ) 3-4/57)
e 2 JI 3,
= Y=ce +ce -

3+4/57 3-457) 3 3
:>y=c1(2x+3)[ +4 J+c2(2x+3)[ y J_ﬁ(2x+3)+2

2
Example — 4 : Solve (1+ x)* o £r, 1+ x) I Y 4 y =4cos{log(1 + x)}

Solution : (1+x) +(1+x) +y 4cos{log(2+x)}

Let (1 +x)—e = t=log(1 + x)
Hence the above equation can be symbollically written as
[DD-1)+D+1]y=4cost
For findingout C.F,, it's AE. isD*+1=0=D=+1i
CF. =ccost+c,sint
t t .

Pl =4 CSS =4.1. o8t _ 2tsint

D +1 2D
Hence C.S.isy=C.F. + P.L

= y=ccost +csint+2tsint
= y=c,cos {log (1 +x)]+ c,sin{log(l +x)}]+ 2 log (1 +x) sin {log (1 + x)}]
6.6 : The Method of Undermined Co-efficients

The method of undetermined co-efficients is a procedure for finding particular solution Yy
of the differential equation of the form.

dn d dn—Z
a y+a Ji+ a, f+ ...... +an_1ﬂ+any=X e (D)
dx" dx" dx"™ dx
Where a, a, a,, ......... , a, are constants and X either (1) a function defined by one of the
following :

(@ Xx',wheren=10,1,2,.......
(i) e**, where a (#0) is a constants.
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(iii) sin (bx + ¢), where b (#0) and ¢ are constants.

(iv) cos (bx + ¢), where b (#0) and ¢ are constants.

or (2) a function defined as a finite product (or sum) of two or more functions of types given in (i),
(i1), (iii) and (iv).
This method is useful only when X contains terms in some special forms. The form of a
particular integral y, can be inferred from the form of X. The following table suggests the form of
the trial solution y_ (for particular integral) to be used corresponding to a special form of X.

TABLE

S.No. Special form of X Trial solution y for P.I.

1 x"ora x" AjFAxX+ . +A X
ora,tax+ax’+...+tax"

2. e™ or pe™ Ae*

3. a x"e™ or e(A,tAx T AX + ... FAX")
e (a,tax+tax +. ... Lax")

4. p sin ax or q cos ax or A sin ax + B cos ax
p sin ax + q cos ax

5. pe® sin ax or ge™ cos ax or e (A sin ax + B cos ax)
e’ (p sin ax + q cos ax)

6. X" sin ax or a x" sin ax or (A, TAX+ ... + A x") sin ax
X" €O ax or a x" cos ax or TA A Xt +A 'x") cos ax

(@, *tax+...+ax") sinax or
(a,*ax+...+ax")cos ax

Remark - 1 : In the above table, n is a positive integer and a, @ ,.......a, p, q, @, b, A, A, ....... ALA/,
..... A "are constants. The constants occuring in second column are known and the constants
occuring in third column are determined by subsituting the trial solution in given equation
i.e., they are found from the resulting identity D)y = X.

Remark - 2 : [fR.H.S. X of given equation f{D)y = X is a linear combination of more than one special
forms of the above table, then the trial solution must be taken as the sum of the corresponding

trial solutions with appropriate constant coefficients to be evaluated later on.

For example, the function X may be defined as X = x3 + x? sin 2x + &**.

We consider the differential equation

2
d—2y—2ﬂ—3y =e™...(2)
dx dx
We proceed to find a particular solution (yp) of the equation (2). We observe that the
differential equation (2) requires a solution which is such that its second derivaties, minimum
twice its first derivative, minimum three times the solution itself add up to the exponential function
™. Since the successive derivatives of ¢* are 4¢*, 16¢*, 64¢™,......... , 1t seems reasonable that

the desire particular solution might be a constant multiple of ¢**.
Thus we assume V= Ae*..... (3)

where A is a constant (undetermined co-effcient) to be determined such that (3) is a solution
of (2). Differentiating (3) with respect to x, we obtain
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y;y = 4Ae" ,y;; =16Ae*
Then from (2), we get

16Ae*™ — 8Ae™ —3Ae*  =¢M,
or S5AeM=¢e* . (4)

Since the solution (3) is to satisfy the differential equation (2) identically for all x. On some
real interval, relation (4) must be an identity in x and hence the co-efficient of ¢** on bothsides of

1
(4) must be equal. Equating the co-efficient we get A= 5 So, a particular solution of (2) will be

1
=3 e
Now we consider the differential equation,
d’y dy
—5 =2 -3y=¢* e (5
dx? dx ree ©)

which is exactly the same as equation (2) except that ¢** in right member has been replaced
by €. As before if we now assume a particular solution of the form

y,= A e (6)
We find that
9AE* — 6Ae>* —3AL = &
or, 0=¢*
which does not hold for any real x. This impossible situation tells us that there is no particular
solution of the assumed from (6).

We have already mentioned that the equations (2) and (5) are almost the same, only difference
between them being the constant multiple of x in the exponents of their respective nonhomogeneous
terms e** and €3*. The equation (2) involving e¢** has a particular solution of the assumed form
Ae* where the equation (5) involving e3* has not any solution of the assumed form Ae>*. The
reason for the difference in the two cases is found by examining the solution of the homogeneous
differential equation.

d’y dy
—5—2—-3y=0 e (7
dx? dx d ™
The auxiliary equation corresponding to (7) is m? — 2m — 3 = 0 whose roots are 3 and —1 and

so e*, ¢ are linearly independent solutions of (7).

The indicates that the failure to obtain a solution of the form y_ = Ae>* for the equation (5)
is due to the fact that the function &3* in this assumed solution is a solution of the homogeneous
equation (7) corresponding to (5).

Then for a particular solution of (5) we can assume a solution of the form Y, = Axe,

We now proceed to present the method of undetermined co-efficients for finding a particular
solutions through the following examples.
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Illustrative Examples

Example — 1 : Solve the initial value problem y” + 4y =4 cos 2x with y (0) =0, y’ (0) = 2, using
the method of undetermined co-efficients. [B.PU.T.— 2007

Solution : The given differential equation is

d2y

—5 +4y=4cos2x...(1)

dx

The auxiliary equation of the corresponding homogeneous equation.
42

L vay=9 e 2)

dx

is m?+ 4 =0, which gives m = £ 2i.

So, the complementary function of (1) is

V.= ¢ €os 2x + ¢, sin 2x .. (3)

where ¢; and ¢, are arbitrary constants.
The nonhomogeneous part of the equation (1) is 4 cos 2x and cos 2x appears in the
complementary function y,.. We replace the function cos 2x and sin 2x x cos 2x and x sin 2x
respectively by asitis So, we assume a particular integral of (1) as

y, =X (A cos 2x + B sin 2x)
where A and B are arbitrary constants to be determined such that Yy satisfies the given
equation.

Now, y;, = (—2Asin 2x + 2B cos 2x) x + A cos 2x + B sin 2x
and y;, = (-4 A cos 2x — 4B sin 2x) x + (-2A sin 2x + 2B cos 2x) — 2A sin 2x + 2B cos 2x

Substituting the expressions for Yy and y;, in the equation (1), we have

(—4A cos 2x — 4B sin 2x) x — 4A sin 2x + 4B cos 2x + 4x (A cos 2x + B sin 2x) = 4 cos 2x

or 4B cos 2x — 4A sin 2x =4 cos 2x

Equating the co-efficients of similar terms from bothsides, we get
4B=4and 4A=0 or,B=1andA=0
S0, y, = X sin 2x
Hence the general solution of (1) is y =y, + V-
i.e., y=c; cos 2x + ¢, sin 2x + x sin 2x e (4)
Now, )" =—2 ¢, sin 2x + 2¢, cos 2x + sin 2x + 2x cos 2x ... ()
Given conditions arey (0) =0, y' (0) =2
Using given conditions we get from (4) and (5),
0=cyand 2= 2c,



Linear Differenitial Equations of Second and Higher Order

ie,c,=0andc,=1
.. The required solution of (1) is
y =sin 2x + x sin 2x
2
Example — 2 : Solve the differential equation % - 3% +2y=2x%+¢" +2xe” +4¢>* using
the method of undetermined co-efficients.
Solution : The given equation is

d’y .d

L3500y 2o 4 e+ 2ne A (1)

dx dx

The auxiliary equation of the corresponding homogensous equation.
d’y . dy

—5 —3—+2y=0..(Q2

dx? dx 4 @

is m>—3m+2=0

ie, m—1)(m-2)=0

ie, m=1,2

so, the complementary function of (1) is
Y., =c et e,

Where ¢, and ¢, are arbitrary constants.

The non-homogeneous part of (1) is 2x% + ¢ + 2xe* + 4¢3* which is the linear
combination of x2, ¢*, xe* and &**.

Now, the function x and its e* successive derivatives of x? are multiplies of x2, x, 1.
The function and its successive derivatives of ¢* are ¢*. The function x¢* and the
successive derivatives of xe* are expression involving xe* and ¢*. The function ¢** and
the derivatives of e3* are multiple of e3*.

We now observe that the set {xz, x, 1} includes x? which is included in the
complementary function y,, e* appears iny , xe* of the set {xe*, '} occurs iny,_ and e
also appears in y.

Thus we take a particular integral of (1) as
¥, =Ax*+Bx+C+De™+Ex? e +Fxe',
where A, B, C, D, E and F are arbitrary constants.

", ¥, =2AxB+3D ¥ + Ex? ¢' + 2E xe* + F xe* + Fe*.
and y, =2A+9De* + Ex? ¢* + 2E xe* + 2Ee* + 2E xe* + Fe* + F xe* + Fe".
=2A + 9De* + Ex? ¢" + 4Exe” + 2Ee* + Fxe* + 2Fe”.,

Substituting Vs y;, and y;, in the equation (1), we get
(2A—3B+2C)+ (2B—6A) x +2A x2+ 2D &3* - 2E xe* + (2QE—F) &" = 2x2 + &° + 2xe*+ 4>
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Equating co-efficients of like terms from bothsides, we have
2A-3B+2C=0, 2B-6A =0,
2A =2, 2D =4,
—2E=2,2E-F=1,
From the above relations we have

7
A=1,B=3,C=E,D=2,E=—1,F=—3

So, the particular integral is

2 7 3 2
Y, =x +3x+5 +2¢7* —x° e — 3xé’.

Hence the general solution of (1) is

; 2x 2 7 3x 2
ie, y=cy e +ce™+x +3x+5+2e —x°e* — 3xe".

Example — 3 : Solve (D* +2D*-D -2) y=¢* +x%.

Solution : Given (D*+2D*-D-2)y=¢" + x* ..cceue.e.. (1
Hence the auxiliary equation is D* +2D*~D -2 =0
or D(D+2)-1(D+2)=0sothatD=1,-1,-2.

S CE=cetce tce™ . (2)

Corresponding to special form x* of R.H.S. of (9), we choose trial solution for P.I. as A + A x +
A x*. Since e* occurs in R.H.S. of (1) and it also occurs in the C.F. (2) corresponding to a root of
multiplicity one, so we choose trial solution for P.I. as A x e* (note that term €* is not included,
since it already appears in C.F. (2) with arbitrary coefficient c ). Combining the above two trial
solutions, we attempt a trial solution for P.I. of the form.

y,=A,tAx+ AxX’+Axe. ... 3)
Since y must satisfy (1), we have (D*+2D*-D-2) y,=e+ x2
or D’y +2D% —Dy -2y =e' +x* ... )]
(3) =Dy =A +2Ax+Ae(x+1) . 5)
(5) =Dy, =2A,+Ae" (X +2) .. (6)
(6) = D’y = A (x+3). o @)

Using (3), (5), (6) and (7), (4) reduces to
Ae(x+3)+4A +2A(x +2) - A —2Ax-Ae(x+1)
—2A —2Ax - 2A X - 2A xe" = e + x°

or —2AXx*—2(A, +A)x +4A —A-2A +6Ae =e+x’,

which is an identity and so equating coefficients of like terms,
—2A,=1,-(A,+A)=0,4A, - A —2A =0, 6A,= 1; hence

1 5 1
A,= (EJA 2°M" (Z)A ¢+ Sofrom (3),
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5 1 1 1
Pl = _(Zj + (5) X — (5) X+ (gj xe* and general solution is

1
Y=ce”+cex+cez"(§)+(_)x lxz+ 1 xe'
! 2 3 4 2 2 6

d’ f
Example — 4 : Solve ﬁ ~9y=x+e’ —sin 2x. Using method of undetermined coefficients for

finding particular integral.

d’ .
Solution : d—J;—9y=x+e2 —sin 2x (D
X

. SFEis(D*-9)y=x+¢e*—sin2x
AE.isD*-9=0..D=+3

CFE=ce"+ce™
Now, none of the terms in X (= x + ¢* — sin 2x) is present in in C.F.
.. We write the trial solutions corresponding to x, ¢, sin 2x and sum them up.
.. Trial solution for P.I.

y,= (A, TAX)+ (A,e™) + (A,sin 2x + A, cos 2x)

Differentiate (2) w.r.t.x twice, we get

Dy, = A, +2A,e + 2A c0s2x — 2A ;sin2x

D%y, = 4A e’ —4A;sin 2x - 4A ,cos 2x
Substituting in (1) the values of y* and D?y?
4A e* — 4A sin2x — 4 A cos2x — 9A — 9A x — 9A e* — 9A sin 2x — 9A, cos 2x
=x+e*—sin2x—9A —9A x - 5Ae* — 13 Ajsin 2x — 13 A cos2x = x + e — sin 2x

Equating coefficients of like terms on the both sides

1
—9A,=0 A =0, -9A =1 A= —3
1 . 1
-5A,=1 SAE —g, —13A,=-1 ..A3=1—3
—13A,=0 L A,=0
1 1 1
A= 0,A = —§,A2= —g,A3= 1—3,A4=0
1 I 5, .
PL= —x——e +—sin2x
9 5 13

1 1, 1.
5 CS.isy=CF +PL=ce*+ce™ —;x —gez +1—3s1n 2x



