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Partial Differentiation

3.0 Introduction

The functions studied so far are of single independent variable. There are functions which depends
on two or more variables. The area of the rectangle depends on it’s sides x and y units of length, the
volume of parallelopiped depends on its length, breadth and height i.e. the area of a rectangle is a
function of its two independent variable x & y. Then we have to write A = f'(x,)) = xy. In general, if fis
a function of several independent variables x,y,z... we express this fact by the symbol f'(x,y,z...)

In case of y = f'(x), only a single dependent variables which can be expressed in terms of a single
independent variables. Here x is called independent variable, y is called dependent variables. In case of
z=f(x,y),z is a function of two variables, where z be the dependent variable and x,y are called two
independent variable.

In case of u = f'(x,),z), u is a function of three variables, where ‘u’ be the dependent variable and
x, ¥, z are called independent variables.

Limit :

If the values of the function z = f'(x,y) can be made as close as we like to a fixed number / by
taking the point (x,y) close to the point (x, y,), but not equal to (x,, y,) then we say that / is the limit of
S as the point (x,y) approaches the point (x,,)

We write this in symbols as

(X,)’)Z_l’?;l‘OJ/o)f(x’y) Z

We read this as : the limit of f'as (x,y) approaches (x, y,) is L.

Remark : The condition

o S(x)=flab)
is very much stronger than the requirement

lim f(x,)= [ (a,b)

y—b
The latter allow (x,y) to vary on a particular line through (a,b), y = b or x = a; while in the former
(x,y) is allowed to approach (a,b) in every possible manner. However, the partial limiting process
has a useful role to pay in the concept that we given below.
Now we have two equivalent definitions of limit as given below.
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Definition -1 : The limit of f{x,y) as (x,y) approaches (x,, y,) is the number / if any € > 0, there exists
a & > 0 such that for all points either.

@) 0<\/(x—x0)2 +(y—y0)2 < & implies that | f (x,y) — | <& or
(i) 0<|x-x|<dandO0<|y-y, |<&impliesthat|f(x,y)—/<e

2 2
f— x 7 .
Example-1: If f (x’J’) B iZ 4 x? , for (x,y) #(0,0) show that (x’yl)l_’t(lg’o) f (x,y ) does not exist.

Solution : Here the point (x,) can approach the origin infinitely in many way.
For example, if we approach the origin along x-axis, then y = 0. In this case,
2
f(x,y)z lim =L2:—1
x

lim
(x.7)~(0.0) (x.)~(0.0)
On the other hand, if we approach the origin along y-axis, then x = 0 and in this case we get,

2
lim f(x,y)=lim =y—2=1

(x,)—(0,0) (x.y)->(00) y
Thus we get different values of limits depending on how we approach the origin. Hence we
have shown that for any open disc centred at the origin, there are points at which takes on
the value +1 and —1. Therefore f cannot have the limit as (x,y) — (0,0)
This example leads us to a general rule for non-existence of the limit, which we can state as
follows.
If we get two or more different value for

(x,yél—’ﬁom &)
as we approach (x,, y,) along different paths (Path is another name for a curve joining (X,y)
to a given point (x,, y,) then

li
" )mzo 0 S(x.»), does not exist.

We state the following theorem without proof.
Theorem —1 :
lim X,y)= lzm x,y)=1
It (x,y)ﬁ(m}o)f( M=hand jm g( y)=1h
then
@ . lim [y +gey)]=1+1

(va/)—’(onfo)

(ii) lim [f(xy)-gxy) =4 -1

(xv)’)—’(XOJ/o)

iy . dim [ () g(xy)] =4l

(x.%)>(x0.30)

(iv) lim [K f(x, y)]] = K[|,k being any constant, and

(x.)=(x0.7%)

f(x Y):| 11

I LI
M s m}(o %) { gxy) | L ifl,# 0
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Definition - 2 : A function f'(x,y) is said to be continuous at a point (x,, y, ) if
(i)  fis defined at (x,, y,)
(ii) lim )f (%.7) exists and

(x,y)—>(x0,y0

(i) (,fmS@)=1(x05)

(0,70
Example -2 : Determine the points at which f (x,y) is continuous if

xy .,
if (x,y)=(0,0
f(x,y): x2 +y2 f( y) ( )
0 if (v y)=(0,0)
Solution : We approach (0,0) along the line y = m x, m being an arbitrary constant. Then

2
xmx mx m

li v)= i —— =  [i =
oo )=t T C(iem?) T

Here we get different limits for different values of m.

Therefore yii_r:%o,o)f (%) does not exist.

So fis not continuous at (0,0)

ab
24 72 lim X,y) = = fla,b
When (a,0) # (0,0), @+ &% 0and  lim  f(x.y)=—=5=f(ab)

Therefore fis continuous at all points (a,b) # (0,0). So we conclude that f'is continuous at

all points except the origin.
Here we make a note : If one or more of three conditions in the definition of continuity of
fx,y) fails to hold, then f'is discontinuous at the point under consideration.

3.1 : State & Explain Partial Derivatives upto Three Variables

Partial Derivatives :
So far we have studied about derviatives of functions of a single variable i.e. y = f(x)

dy _ Iim S(x+8x)— f(x)
dx &0 ox
independent variable. In order to find the derivative of a function of two variables the following
procedure is adopted.

If a dependent variable is a function of two or more independent variable, in that cases partial
derivaties exists i.e. z=f (x,y). The function is differentiated with respect to one of the independent
variables while other is treated as constant.

Consider a function of two independent variables x and y. Let z = f{x,y). If the variable x under
goes a change ox while the variable y remains constant, then z undergoes a change dz.

oz =f(x +dx,y) —f(x.y)
We say that z possesses partial derivative w.r.t. x and denoted by

O _ i JEHERY) - fxy)  Of

a dx—0 Ox a -

= f (x), In that cases if a dependent variable is a function of single

I
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Simillarly z possesses partial derivative w.r.t y and denoted by
oz _ . fley+&)-flxy) of _
— = lim =—=f,
0y -0 oy oy

0
The symbols o

.. The partial derivative of z = f{x,y) with respect to x is the ordinary derivative of f{x,y)when y
is regarded as constant. i.e.

and 5 are used to denoted the operators for partial differentiation.

0z
o partial derivative of z w.r.t. x treating y being constant.

The partial derivative of f(x,y) w.r.t y is the ordinary derivative of f{x,) when x is regarded as
constant. i.e.

0Oz

oy partial derivative of z w.r.t. y treating x being constant.

So all the rules of differentiation such as differention of sum product, quotient of functions and
chain rule are also applicable here.

3.2: Higher Order Partial Derivatives

0z Z
Let z = f(x,y) be a function of two variables. Then —— and 5 are themselves functions of two

ox
) 0z 0z
variables x&y,a—p’a_y—q
oz ofez) of ?z ooz 8if

oz ofoz o’z ooz
= — — :fxy:S =—] — :f;}X:S
oxdy Ox\ Oy > O0yox Oy \ Ox

But they are equal (as in most case) When partial derivatives are continuous.
Note - 1 : In general f =7

o’z B 0’z

Ox0y - Oyox

On similar lines, we can define partial derivatives of orders higher than three.

Note - 2 : In all ordinary cases

Illustrative Examples

0z oz

1 = 2y + xv?. Find 2% R
Example —1: Ifz=x% +xy? Find o and oy

Solution : z=x% + x)*
S—i:@—ﬁx(xzy+xy2) =6%(x2y)+a—ax(xy2) =2xy+y’
g—; :ai;(xzy + xyz) = a—ay(xzy) +a—ay(xy2) =x2+ 2xy
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0z 1074
, Find — and —_

ox oy
Solution : GivenZ:Sin( j
oz 0 | . x)0(x 1 X
—=—Sin =cos| — |—| — |=—cos| —
ox ﬁx{ ( J} (y}ﬁx(yJ y (yJ
S-SRl G5 )
— = —85ln| — =Ccos| — |,—| — =COS—,—2 =—2€OS—
oy oy y y)oy\y y)\y y y

u *u %u

Example -2 : If z = sin(ﬁ

~
~—

< | =

<=

-3 = + 12+ 2)-12 + + =0
Example — 3 : Ifu = (2 + )y’ + )77 show that o oyt o
Solution : Given u = (x> + y? + z%)'?
Ou =15 5 \32 0/, 5
—=—(x"+y +z —(xT+y 4z
ox 2 ( 4 ) 6x( 4 )
1o 2 3R 2, 2 2y Y2
=— +y 4z 2x==x{x"+y +z
S +y +2) (*+5*+2%)
d*u 8{ s 2 a2 73/2}
— =—q-x(x"+y +z
ot ox ( 4 )
[0 (2, 2, 2\ 2, 2, 2y 0 i|
=—{xX.—_——\x +)y +z +{x"+y +z X
_ 8x< ¥ +22) (x4 42 6x( )
[ (B2 2 2y 2, 2 2\
== x|—|x"+y +z 2x+(x"+y  +z
(S 0242 P2 (v 40 42)
—3x2 5 s 32 -3x? +(x2+y2+zz)
R 25/2+(x Ty +Z) - 2 2 2}
(x +y +z) (x +y +z)
_ —2x? -i—y2 + 77 2x? —y2 — 7
== 52 |7 502
(x2+y2+zz)/ (x2+y2+zz)/
o*u 22—zt —x*  du 227 —x* —y?
- =2 52 A2 5/2
Similarly gy, (xz + 5 +Zz)/ , Oz (xz + 5 +Zz)/
o*u @ @_ 2x% =y = 2? 2y? —z% — x? 227 —x* =yt

o’ ot e (xz +y° +Zz)5/2 ’ (xz +y° +22)5/2 ’ <x2 +y? +22)5/2

2—x2+2zz—x2—yz_ 0

(xz +y? +zz)5/2 (x2 +° +zz)5/2

B 2x? —y2 —z? -|-2y2 -z
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3.3 : Partial Differential Equation of First Order
Defination : A partial differential equation is a relation between the independent variables, dependent
variable and it’s partial derivatives.

Ifz=f{x,y), z is called a function of two independent variables x & y. The partial derivatives.
oz 0z 0’z

Ox _p’ﬁy _q’ﬁxz -7

o’z B o’z B o’z

Ox0y - Oyox - oy?
An equation involving one or more partial derivatives is called a partial differentiation. The
order of a partial differential equation (P.D.E) is the order of the highest partial derivative in the
equation and it’s degree is the degree of this derivative.

o*u Oou _ I%J

=t

ou ou
. —_— —_—= 1 + =
Example : x o +4y o 2u + 3xy (Linear), (sz 5 2 o
o’u  0u
—+—5+8u=0
Now axz ayz
A (P.D.E) are linear since partial derivatives as well as the dependent variable occur in the first

degree.
A (P.D.E) is said to be homogeneous if each term of the equation contains either the dependent
variable or one of its derivatives otherwise it is said to be non-homogenous.

FORMATION OF A P.D.E.
In case of ordinary differential equations which arises from the elimination of arbitary constants,
in case of partial differential equations can be formed by the eliminations of arbitary constant or
by the elimination of arbitary functions from a relation involving three or more variable.

Solutions of a partial -Differential Equation :
Itis clear from above examples that a partial differential equation can results both from elimination
of arbitary constants and from the elimination of arbitary functions. The selection f (x,y,z,a,b) =
0 of first order partial which contains two arbitary constants is called a complete integral.
A solution obtained from the complete integral by assigning particular values to the arbitary
constants is called a particular integral.

Definition : A solution of a partial differential equation is said to be a complete solution or a complete
integral if it contain as many arbitary constants as there are independent variables.

Definition : A general solution or a general integral of a partial equation is a relation involving arbitary
functions which provides a solution to that equation.

Lagrange’s Linear Equation is an equation of the type :

Pp+Qq =R
‘ _o
Where P, Q, R are functions of x, y, z and P o q oy
Working Rule :
Step —1 : Write down the auxiliary equations & = LA = @
P O R

Step -2 : Solve the above auxiliary equations, let the two solutions be u=C,, and v =C,
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Step -3 : Then f{u,v) =0, or u = ¢(v) is the required solution of Pp + Qq =R
Method of Multipliers :

Let the auxiliary equations be & = LA = @
P O R
. dx dy dz ldx+mdy+ndz
I, m, n may be constants or function of x, y, z then we have —=—~=— = ——+—"——
P O R [P+mQ+nR

[, m, n are chosen in such a way that /P + mQ + nR =0

Thus ldx +mdy + ndz =0

Solve this differential equation, if the solution isu = C,.

Similarly, choose another set of multipliess (/,m ,n,) and if the second solution is v = C,.
.. Required solution is f{u,v) =0

Illustrative Examples

Example -1 : Solve z =ax+ by +a’ + b’

Solution : z=ax+ by + a*+ b* (1)
Differentiating partially to equation (1), with respect to x,
L 2
o
Oz

Again differentiating partially to equation (1) w.r.t y we have 6_y =b

Putting these values in (1) we get
Oz 0z (82)2 0z ?
Sz=—x+—y+|—| +|—
ox Oy ox oy
0 0
2>2=px+qy+p2+q2('.'—z—P—Z:q)

ox "oy

Example — 2 : Solve 7 =f(x*-y?)
Solution : z=f(x*—)?) (1)
Differentiating the eq" (1) partially w.r.t. x

0:

Z () o)
X

Again differentiating partially w.r.t. y the eq® (1)

aZ 2 2

—=f"x" =y ) (-2

o fE=y)ey 3)

Divide the eq® (2) by the eq” (3) we have
Oz
o S -)en)

O p( -y -2) v
Oy
:>£=—1:>py+qx=0

Y

It’s the required partial differential equation of 1st order.
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Example — 3 : Find the differential equation of all spheres of fixed radius 3 having their centres in
the xy plane.

Solution : From the co-ordinate geometry of three dimensions, the equation of any sphere of radius 3
having centre (a,b,c) in xy plane written as
(x—a)’ + (y-b)* + (z—)*=9
ie (x—a)’+ (y-b)P*+z22=9(asc=0) ............ €))
.. Differentiating partially the eq” (1) w.r.t. x we have

:2(x—a)+22%:0 :x—a+z@:0
Ox X

=>a=x+ Z@ =x+
o T
Again differentiating partially to the eq” (1) w.r.t. y we have
:>2(y—b)+2z%:0 :>y—b+2%=0
oy 0

=>b= +Zg
Y oy =y +zq

Putting the value of @ & b in the eq® (1) we have
—S(x-x-zp) +(y—y—zq)° +z> =9

:zzp2 +22q2 +z2=9

:>22(p2 +q° +1):9

.~ This is the required partial differential equation of all spheres of fixed radius ‘3’ having
their centre in the xy plane.

Example 4 : Solve f(xy + 7, x+y +1z)
Solution : f(xy +z5,x+y+z)=0...... (1
Letu=xy+tzZ4,v=x+y+z
So, the equation reduced to f{u,v) = 0
Differentiating w.r.t x

(o o) o0 o )

ou\ox 0z ox) ov\ox 0z ox

of of

=——+2zp)+—=—(1+

au(y zp) av( p) (1)

Again differentiating w.r.t. y

1(%% @)ﬁ(@ﬂ @)

ou\dy o0z oy) ovloy oz oy -(2)

T g
= (x +2zq9)+ aV(1+q) .(3)
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of v+2zp, l1+p

0
Elliminating —— & oy e have

ou 0
= (y+2zp) (1+q) — (1+p) (x +2z¢q) =0
= (y+2zp)+qy+ 2zpq —x —2zq — px — 2zpq
=S>(+qy—-(Q+p)x+2z(p—q)=0
This is the required partial differential equation of first order.

x+2zq, l+gq

3.4 : State Homogeneous Function and Euler’s Theorem for Two Variables

Homogeneous Function :
A function f{x,y) is said to be homogeneous in x & y of degree ‘n’ if f(tx, ty) = " fix,y) where ¢ is

ao| X
any constant. If it can be expressed in the form X nd)(l) or V (I)[;J
X

A function f{x,y) is said to be homogeneous in x & y of degree n if sum of all powers of x & y is
equal to n.

Example —1 :  Test the following functions are homogeneous. (i.e. power of each term is same)
(i) fxy)=xXy+xy’
(i) f(xp) = 2xy* = 3xy + (x—p)’°

i) f(x%p)=sin! GJ
(v) flx,y) =x° + 2xy +y* + 3x + 3y
Solution : (i) Given f(x,y) = x* + xy* Here f (¢x, ty) = % ty + tx. 157
=£xy + £xy* = £ (x* + xy%) = £f (x,y), Hence fis homogeneous of degree 3.
(i) f(xy)=20"-3x%+ (x—), fltx, ty) =2. tx. 97 = 3.5ty + (tx — ty)?
=2£x" =36 + £ (x—)* = £ [207 - 3xy + (x—»)’] = £f(x,y)
Hence f'is homogeneous of degree 3.

i) S(xy)= sinl(f), [l 1) = Sinl(z] ) Sinl(ﬁ) - Sinl(ﬁ)
v y g g

Hence f'is homogeneous of degree ‘0’
(iv) f(x,y)=x*+ 2xy +)?+ 3x + 4y is not homogeneous.

Notes :
(1)  If each terms in the expression of a function is of the same degree then function is homogeneous.
Oz 0z
(2) Ifz is a homogeneous function of x & y of degree n thena and 5 are also homogeneous of
degree n —1

(3) Ifz=f(xy) is homogenous of degree n then we can put it in the from z = x”q{i)
X

(4) Similarly a function f{x,),z) is said to be homogeneous of degree n in the variable x,y,z if

n z n X z n X .
fxyz)=X 4{%;) or Y d{;;) or Z d{;%) otherwise f{tx, ty, tz) = t" fix,y,z)
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3.5: Euler’s Theorem On Homogeneous Functions

Oz Oz

Theorem —1 : If z is a homogeneous function of x and y of degree n then ¥ —— ox Ty 5 =nz

Differentiating (1) partialy w.r.t, x and y we have

0Oz y w (VYY) 92 a ()1

aoe ) (D) S (6)
e o )
Ox 8y X X X x

Eulers theorem can be extended to a homogeneous function of any number of variables. Thus if

z is a homogeneous function of degree » in x,),z then * é +y 6_; +z % =nz
Theorem -2 : Given z is a homogeneous function of degree n is x and y then by Euler’s theorem
2 2 2
ngx 2yaa—az y 6izn(n—l)z
Proof : Since z is a homogeneous function of x & y of degree n.
oz oz
By Euler’s theorem, we have X ox Ty 5 =nz . @)
: o o’z 2z _ oz 3y
Differentiating (i) partially w.r.t x we have Ee +x Pyl +y oxdy = ”a .......... (i)
) o ) : 0z 07z 0z z 9z
Differentitating (i) Particularly w.r.t y we have X oyox + 8_y +y 8)/_2 = nﬁ_y , [ oxdy = Y BxJ

62 z e 52 + 62 . % -
5x6y oy 6y By (iii)
Multiplying (ii) by x, (iii) by y and adding

, &%z o’z , 0%z 62 Oz oz oz
X ¥+2xy +y +lx—+y—|=nx—+y—

oy ov? Y ox oy ox oy
x26—+2 6_22+ —+nz n.nz
ot o T ey yaz
0’z 0’z 0’z
2 2 2
—+2x —=n"z—nz=n(n-1)z
or X o2 y66y y&yz ( )

Note :
Ou f(u)

(1) If zis a homogeneous function of x, y of degree n and z = f{u), then xa— +y—= -
o oy ()
(2) If flu) = v(x, y,z) where v is a homogeneous function in x, y, z of degree n then

6u+ 6u+ ou nf(u)
Ox 6y o f’(u)
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\
. . 0’z 0’z oz
(3) If z is a homogeneous function of degree »n then x—2+y—=(n—1)—,
ox Ox0Oy ox
o o* o)
Xz +y—§=(n—1)—z
Oxoy oy oy

Illustrative Examples

Example —1: Verify Euler’s theorem :
Ou  Ou _

@ Ifu=xt+y+2, then, x4+ y &1 % 5y
ox oy 0z
) Ifu=2+y'+25+ 3xyg, then, x 2% 4y 040 % _ 3,
ox oy oz
U_Z+£+£ x%+ %+z%_2u
(© If"=_"7 ythen, o y&y P

u_x_2+y2z2 x%-i- %+z%——2u
@ 14 ' xf T ox y&y 0z

Solution : (a) u = x* +)* + z% Here, u is a homogeneous function in three variables x, y and z of
degree 2. Therefore, by Euler’s Theorem, we get.

ou ou Oou
X—+y—+z—=2u
Ox oy oz

(b) Given that u = x* + y* + z*. Here, u is a homogeneous function in x, y and z of degree 3.
Therefore, by Euler’s Theorem we get

ou Ou ou

‘x_+y_+Z—: 3u
ox 8y oz
z X
(¢) Giventhatu=2+=+2
4 X y

Here, u is a homogeneous function in variables x, y and z of degree zero. Therefore by
Euler’s Theorem, we get
Ou ou Ou
—+z—=
Ox oy oz
2 2.2
X

z
(d) Given that ¥ = zy_3 + G Here u is a function in x, y and z of degree —2. Therefore,

0

by Euler’s Theorem, we get

ou ou Ou
X—+y—+z—=-2u
Ox oy oz
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X+ 1
Example-2: If u= sin”! g then verify x% + y% is equal to — tan u
x y

[V o) 2
. . X+y
Solution : Here sinu=——==f (sa
N

1 1
.. fis a homogeneous function in x and y of degree (1 ——) ie ~

2 2
0 0 1
.. By Euler’s Theorem of f'we get x—f + y—f =—f
Ox oy 2

o, . 0, . 1.
or, x—(sinu)+y—/(sinu)=—sinu
Ox oy 2

ou ou 1 .
Or, XCoSu—+ycosu— =—sinu
Ox oy
x@_'_ ou _ 1 sinu
o ™ ax y@y 2 cosu
Ou

or, x—+y—u =—tanu
Ox oy 2

2, 2
_ +
Example — 3 : Prove that if 7 = sin”’ Ty , then x% + y% = tang
xX+y oy

' ' . x2 +y2 x2 +y2
Solution : Given Z = Sin ,Letu=
x+y xX+y

So that z = sin' u, Here u = sin z

2 2
+
Given U = , Since u is a homogeneous function of x & y of degree 1
0 0
So by Euler’s theorem= 2y y—u =lu=u
ox oy
Given u = sin z,
ou 0z 0 oz
—=co§z.—,—=C0SZ.—
ox Ox Oy oy
ou ou
X—+y—=u
ox oy
Oz

X y X oy

Oz Oz sinz
= X—+ty—|=——=tanz
Ox oy ) cosz

oz . 0z 0z .
:>xc0sza—+yc0sza— =sinz = cosz xa—+y— =sinz
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X - -1
Example — 4 : [f cosu= —y,prove that x% + y% =—cotu.
Vx+\y ax oy 2

xX+y _ x[1+(y/x)] :x1/2{1+(y/x)}
\/;+\/; «/;[1+ y/x] 1+y/x

ie, cosu=x"g(y/x)

Solution : cosu=

1 1
= cos u is homogeneous of degree 5 (” = 5)

Applying Euler’s theorem for the function cos u we have,
1
xi(cosu) + yi(cosu) =—-cosu
Ox oy 2
. . \Ou . you 1
ie., x(—sinu)—+ y(-sinu)—=—cosu
Ox oy 2

x%-i- Ou _ 1 cosu
or " ox y@y 2 —sinu

Thus x% + y% = —lcot u.
Ox oy 2
Exercise
l. Find the first order partial derivatives of the followings

2 2
o e (b)Z:mnl[% j (©) u = log (7 + ) (d)u=sin1(£J

y
[ x x vy
() u=x () u = xe’ + ye* (g) U= sm(;} (h) u= ;Zan (;)
2. Find the first order partial derivative for each of the functions.
@) u=xyz (b) u=x"+y"+z* () u=ev (d) ”:Z”(x:y)

3. Ifu=e'(x cosy—ysiny),verifyu +u =0.
4, Ifu = log (x* + y* + 2> — 3xyz) show that
ou ou ou__ 3 0.0, 0Y e y42)
—t—t—=— —+—+— | u=-9(x z
(@) Oox 0Oy 0z Xx+y+z (®) ox Oy 0Oz ! 4

., 0 . 0
5. Ifu = log (tanx) prove that sin 2 sin 2y—u =2,
ox oy

2
— oz — = = (1+3xyz + x2y?*z%)e™”
6. If u = e¥*, prove that ox Oy 0z ( Y y ) .
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7. Letr’ =x’+)’+z2and V=r"provethat V. +V +V_=m(m+1)rm?
8. Ifu=log (x’+ y’ —x’y —x?) show thatu _ +2uxy +u_=—4(x +y)’
3, .3
+ 0 ou 5
r Ty show that x—u+y—u=—u
,[x-}-y ox 6y 2

9. Ifu=

N Ou _ —40u

| Yy _
10. Ifu=sin [—\/;+\/;j show that % x oy

11.  Verify Euler’s theorem in following cases

4
(x+)
(a) Z:xy+T (b) z=axy + byz + czx
g
© =TT
X2 +y7
2, .2
X +y
12. Ifu=1n( J,showthat x%+y%:u.
Y 0x oy
242 0z 0z
+
13, If z="—""— show that ¥ -+ —=-=0,
xy x Y
14. Ifu=x2+y2+zz,sh0wthatx%er%Jrz%:zu_
X Y z
15.  TIfu=tan' (x*+)*+ 2%, show that xu_+ yu_+ zu_= sin 2u.
Y X y z
.1 X -1 Y ou ou
. u=sin | — (+tan | —| ghow that x—+ y—=0.
16. If (yJ (x),s ow that x— y6y
Answers
x2 4+ 2xy - y? 2 4+ 2xy —x*

L (a) 3x%2 2x (b) 2

(x“‘Y)z +(x2+y2)’ (x-i—y)2 +(x2 +y2)

X y -y X
(c) x2+y2’x2+y2 (d) x2+y2’x2+y2
() ' x'nx (e) & + ye', xe’ + e
x| 1 X -X
(g) COS(;J ';, COS(;J . (7]
2. @) yz zx, xy b) '+ 2z Inz, ¥ Inx + zp~' +y*lny
1 1 -1
(©) yze™ zxe¥, xy e (d) Tz

x+y’x+y’ z



Partial Differentiation

Objective type Questions with Answers

Multiple type or dash fill up type questions. carries 2 Marks
1. Answer the following questions :

0
(a) Find 6_y [sin (x + 2yz)]

Ans. 2z cos (x + 2yz)
(b) Write True or False :

fo_1+)°

(i) Iffx, y) = tan (tan"'x + tan"'y), then 7 R
Ans. T

(ii) If fix, y) = ', then f, = ¥ ~(In x)?
Ans. F

2 2
(c) Ifz=sin(x*> y?), then (%] J{%] -
ox oy

[4x2y2 cosz(xzyz), 4x2yz(x2 + yz), 4x2y2(x2+y2) cosz(xzyz), none|
Ans. 4)c2yz(x2 + yz) cosz(x2 yz)
2
(d) Ifu=xcosy, whatis Oou 9

ox?
Ans. 0

0 3
ind —/n(3x+
(e) Find o n(x y),
3
3x+y3

® Ifu :\/;+\/;+\/_,, ﬁndxux+yuy+zuz.

Ans.

Ans. —u
ns. -

9 f
2. Evaluate of and o"_y if f{x, y) is given as

ox
(i) ax’+bh+exy+detey+f (i) 3x2 —4xH? + 6)?

o x+2y ] X >
(iii) m (iv) RN (v) &
(vi) sin™' (E] +tan! [lj (vii)  x?cosy+)”sinx

y X
(viii)x¥ + y* (ix)  x logylog(x +1?) (X) tanxy

Ans. (i) 2ax+cy+d, 2by+cx+e (i) 2x(3 —4y?), 4y(3 —2x?)
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/
-3y 3x V2 —x? 2xy
WD (42077 (v + 207 W) G TPy
1 y -X by
(v) €, 2 M S R A Py

(vii) 2x cosy + y? cosx, 2y sinx —xZsiny  (viii) yx’ ™' + y*In y, ¥ In x + xy*!

gyx

log(x+y )+ ——== 2xy logy
y

x+y’

(ix) logy log(x+y ) +

(x) ysec xy, X sec xy

el

If z=xy f( j find the value of xa—+y 0z _ —
X Ox oy

Ans. 2z

2 2
4. Ifx=rcos 6, y=rsin0, find the value of (@J + @ = —
ox oy

Ans. 1

y Lo, ou_
5. Ifu=f <) then find the value of o ¥ vy

Ans. 0

6. Using the deﬁmtlon of partlal derivative, find f (1, 2) and f (1, 2)
where f(x, y) = x> + xy + ).

Ans. 4, 5
_ ) ) 2 821/{ 28214 _ _
7.  Ifu=log \[x*+y?, find the value of x* — —y°— atx=1,y=1.
Ans. 0
Ifu= by, find the val f@zu ou
8. u = % sinby, find the value o o 6y2 _
Ans. (a* —b*)u
ou 0 0
9. If u=¢ev, thenﬁndx—+ y—u+ z—u
ox oy 0z
Ans. 3xyz 7
o o o
z X
=242 X4y tz=
10. If f(x,y,2) x+y’ find the value of o y@y P .
Ans. 0
1. If u=x>+)" +2°, then find the value of xu, +yu, +zu, = ——.
Ans. 2u

O & O3



