Curvature

2.0 : Introduction

Curvature plays an important role in laying curved railway tracks etc. The rate of change of the
direction of the tangent line, at a point on the curve with respect to arc lengths along a curve is
called curvature of the curve. Curvature measures the degree of sharpness of the bending of a
curve at that point on the curve. An important property of a curve is called curvature.

2.1 : Concept of plane curve and measure of curvature
Plane curve : Intuitively a plane curve may be regarded as a set of points (x, ) in R2 = R x R

determined by the range of function f: [a, b] = R?, where f(t) = (f; (1), £, (1)), a<t< b and f, f,
are two real continuous functions (of a single real variable) defined on [a, b] (Where a < b) and
where R is the set of all real numbers.

Formally the function /" [a, b] — R? is called a plane curve or a curve in IR2. Here, the equations

x=f, (t),y =f, (t) are called the parametric equations of the curve. The curve f: [a, b] - R? where
J@)=(f; 0, 1, (), a<t<b,is said to be continuous if £, £, are continuous on [a, b]. Unless
otherwise stated by a curve we shall mean a7 curve which is continuous.
The function y : [0, 2t] — R2 where y (¢) = (cos ¢, sin £), 0 <t < 27, is a circle which is a
plane curve whose parametric equations are
x=acost,y=asintt € [0, 2nx].
If a plane curve v : [a, b] — R2 is given by y (x) = (x, £ (x)), a < x < b then the curve may
also be represented as
y=f(x),a <x < b wherey=f(x)
is called the cartesian equation of the curve and (x, y) are rectangular cartesian co-ordinates
of a point on the curve.

If y : [a, b] &> R2 be a plane curve where y (f) = (f (£), g (¢)), a < t < b then the function
v, 6] > R?
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v O=( @, g ), ast;<t,<b
is called an arc of the given curve y : [a, b] — R?. The parametric equations of the arc are

x=f(0,y=g@), 1, <t<t,.
Here we assume that the curve is rectifiable. Then any arc of a

curve (the curve itself is also an arc of itself) has a length. )
If s be the length of an arc, AP of a curve [Fig.-2.1] where P is a A
variable point on the curve and A is a fixed point on it then it can be Fig. 2.1
shown that by formula of Tangents and Normals :
i tan —ﬂ ii) sin —Q iii) cos —ﬂ
(1) v dx (i) siny s (i11) v s
d dy )’ d dx Y’
. ) y S X
— =, |l+| = —=_l+|—
() dx " ( x ) © dy ( dy )
ds |(dxY (dyY do
iy —=.= = i) tan = r.—
vi) dt ( dt J " ( dt J (vil) tan = dr
sind)—r@ i cosd)—ﬂ N 2y ﬂz
(viii) I (ix) 7 (ix) 0 r m
é =./1+ rz(ﬁjz 1) p=p si
x) o (xi) p=p sind
) L_L+L(£T L[d_j
(xii) p2 27 g0 (xiii) p2 40

ds dy :
Theorem — 1 : Prove that e =1+ e Jfor the curve y = f(x)

Proof : Let P and Q be to neighbouring points on the curve y = f{x) whose co-ordinates be (x,y) and (x

+8y,y +98y) y =A%)
In the right angle A PRQ (Fig. 2.2) Y
(Chord PQ)” = (8x) +(8y) Q
Os
2 2 2 dy
3(Chord PQ] (ArcPQ) :1+(5_y) R p R
Arc PQ ox ox ox
2 2 2
(e :
rec X X
0 Fig. 2.2
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i Chord PQ 1
When Q — P, dx — 0 and Q’_’)”P Arc PO

Ss 5y Y’
So we have lim —= lim |1+ (—y)
x>0 dx  dx—0 ox

2
ds dy : ds dx
— =1+ = imi — =1+
= e (dx) , similarly dy a)
2.2 : Curvature of a plane curve

Let A be a fixed point on a plane curve on which P, Q are two neighbouring points (Fig.-2.3).
Let the length of arc AP be s and AQ be s + As.

Fig. 2.3

Let the tangents at P and Q meet at T where the tangents at P and Q make angles y and
v + Ay with positive direction of the x-axis. Then the whole bending or curvature of the arc PQ

A
is given by Ay and the average binding per unit length is given by A_W
s

We shall define the curvature of a curve in the immediate neighbourhood of a given point
to be the rate of deflection from the tangent at that point. Then it will be reasonable to define
curvature of a plane curve (shown in Fig.-2) at a given point P of the curve as the value of

tim Y rovided the limit exists, But lim ¥ (when exists) = . H lled th
A o provide the limit exists. Bu ey (when exists) = 7, Here, (s, y) are called the

intrinsic co-ordinates of the point P on the curve [Fig.-2.4].

d
Then the curvature at P (s, y) of a given plane curve is defined to be d_w
s

ds
Theorem -2 : Formula for radius of curvature in terms of ‘S’ and ‘y’ or Prove that p = E (Intrinisic
Curve)
Proof : Let P be given point on the curve and Q be another point on it which is very near to ‘P’.

Let normals at ‘P” and ‘Q’ meet at ‘N’. Let are PQ = 8S. Let tangent at ‘P’ makes an angle
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“y’ with the poistive direction of x-axis and let tangent at ‘Q’ makes an angle y + Sy with
the positive direction of x-axis.

Then ZPNQ = dvy (fig. 2.4)
[Since the angle between two lines is same as the angle between their normals. ]

Then C= lim(PN) = lim(PN) Y
0—-P 8s—0

PN PO
Sin/PQON  sindy

But from A PON,

.. PN .5in0

= PO .sin ZPQON =
sindy sindy

= 6—C ﬁ oy sin® PO
55 By sindy” [Where Chord PQ =8¢ 0 (Fig. 2.4

Let Q — P, So that 6¢c — 0, 6s — 0, dy — 0 and Q— 90°

o lim (PN) = lim E.ﬁ.s—w.sine
0P 3s—0| d&s Oy sindy

or p= 1.£~1.Sin90
dy

-.~% :—Ci;"rdPPQ SlasQ— P
ds N rc PQ
or p=——
dy | lim——=1,sin90=1
00 sin

The total bending or total curvature of the arc PQ is defined to be the anlge dy.

The average curvature of the arc PQ is defind to be ratio dy/Os.

The relation between s and v is called the intrinsic equation of a curve. Therefore p =ds/dy
is known  as intrinsic formula for radius of curvature.

The curvature of the curve at the point P is defined as the reciprocal of the radius of curvature
at P. Hence the curvature at P=1/p=d\y/ds.

Example — 1 : Find ‘p’ for the catenary whose intrinsic equation is S = C tan y.
Solution. We have S = C tany

ds 2
=—=Csec
We know P dy v

2.3 : Radius of curvature, centre of curvature and circle of curvature

Let the normals at P and Q (Fig.-2.4) meet at N. Here, we observe that N - C as Q —> P

d
along the curve i.e. as As — 0. Further if d_w # 0 then the reciprocal of the curvature at P is given
s
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by d_w which is usually denoted by p and is called the radius of curvature of the curve at P. Thus
s

d d
we have p= d—;‘] Ifd—lv #0.

The circle with centre C (mentioned above) and radius p is called the circle of curvature at
P and the point C is called the centre of curvature corresponding to P.

d
Remark. If the given curve is a straight line then vy is constant and consequently dw =0at

every point. So curvature of a straight line is zero at every point. In this case, the radius of curvature
pis undefined. We take p = o (not a real number but extended real number) for a straight line in
proving the formulae for the radius of curvature :

s cos \, s siny, sind =r d I ,COos § = I where the notations are usual.

2.4 : Formulae for radius of curvature

Here, we evaluate radius of curvature when the equation of the curve is given in different
forms.
L The equation of the curve is given in Cartesian co-ordinates i.e. y =f (x) (y is an explicit
function of x)

dy
We know that I =tany ... (1)

where y is the angle made by the tangent at the point (x, y) to the curve y = f (x) with
X-axis.
Then differentiating (1) with respect to x, we have

d?y dy , dy ds ; dy ( dx J
- 2Y _ ava _ T —=CcosVy
ey =sec’ y g Sty oo =secy 7
If p be the radius of curvature, then
1 3
ds  secdy sec?y.sec’y  (I+tan?y)2(1+tan?y) (1+tan?y)2
Pray Ty T d ay &y
dx? dx? dx? dx?
3
212
{H(dyj }
or p= dx ..(2)
d?y
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/
dy d?y
here t =— and —= #0.
where tan 2 o
The relation (2) is the formula for radius of curvature when the equation of the curve is
y=1.

. . : . d?y . . .
Note. We see from (2) that p is positive or negative according as d_f is positive or negative, i.e.
X

2

according as the given curve is concave upwards or downwards. If d—;} = 0, then the formula
X

given in (2) fails. In such case, the formula for p would be evaluated as

p= 1x where a2 =0
dy?
II.  The equation of the curve is given in implicit form of Cartesian co-ordinates

ie f(xy)=0
Let the equation of the curve be f'(x,y) =0
Differentiating both sides w.r.t x we get.

G by A,

dx dy dx dc df/dy f,
d d
. d2 _fyi(fx)_fx7<fy) _af _af
Again dx{ = dx fy2 dx I _a’f y —5
d [ S
R A A [fm fyx[ ’ H f [fxy fyy[ ’ ﬂ
= fyz _ i
& 5732
R A A S A {1 () }
- f)-)B ut P = LZy
dx*
or .2 _&f_2f
S = ox*’ T ﬁz’fxy fyx_@x@y_ﬁyﬁx
; 5 73/2
1+[_X] ) 21372
p= b =— (fx A ) (In magnitude)

L) fam 2 ot Sy Ul 22yt 117



Curvature

—_—
Therefore interchanging x and y in the above formula for p, we get
32
{1+ (ax/av)’}
P a4
The formula is useful when dy/dx is infinite i.e. dx/dy=0 i.e. when the tangent is the perpendicular
to x-axis.

If at any point of a curve d%/dx*=0, the point is called a point of inflexion.
III. The equation of the curve is given in parametric form, i.e., x = ¢ (¢), y = y (o).

@
b _ar Y o N :
A where prime (") denotes the derivative with respect to ¢ and x" # 0
X
dt

dxy i[ij _ i[ijﬂ
a2 de\x' ) dt\ x')adx
B y’fxf_yfxffi B
(x)? X
2

d d
Substituting the values of 2 and £ in formula (2), we get
dx dx?

(4T+(4)}

p= dx d’y dyLZx ..(4)

x! y” _ y! x”
(x')?

N | W

where _t —_— -

Note : ® The value of p is positive or negative according as d?y/dx? is positive or negative i.e. according
as the curve is concave upwards or down words. However in numerical problems we shall
be required to find only the length of the radius of curvature and we shall not be bothered
with its sign. So we should reject the negative sign whenever we get a negative value of p.
The curvature is zero at a point of inflexion.

® From the definition, it is clear that the value of p depends on the curve and not on the co-
ordinate.

Illustrative Examples

Example —1 : Find the radius of curvature at the point (x,y) on the parabola y’=4ax
Solution : The given curve y* = 4ax
Differentiating eqn(1) w.r.t. x, we get
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d dy _2a d’y d(2a)_ 2ady  2a2a__ 4d’
dx y Sodx2 dx\ y

1
p= 2 = 2 = 3 2 4q

d’y —4a y 4a
a2 I

from eqn (1)

|7 32 _ 2 32
=———.a"8(x+a)  =—=(x+a ive sion i i
4d> ( ) ﬁ( ) negative sign is negleeted as p is a length.

Example — 2 : Find the radius of curvature of parabola y’=4ax at the origin.

Solution : Proceed example (1) we get p at (x,y) = %(x + a)y2
a

2
. patorigini.e. at (0,0) = E(O + a)y2 =2a

Example — 3 : Find the radius of curvature of the curve y= e* at the point where it crosses the
y-axis.

Solution : The given curve is y = e*

o dy/dx=e* and d*/dx* = e*

32
| [+ /)| (1+e)"
L at X, = =
pat (x.y d*y /dx* e’
The curve y = e* crosses the y-axis (i.e. the straight line x = 0) at the point (0,1)

3
1+e° 1+1)?
.'.pat(O,l):( 0) :( 1) =2J2
e
Example — 4 : Find the radius of curvature at (x,y) on the curve a’y = x* — a’
Solution : The given curve is ¢’ = x* — @’

. . s . dy 1 2 d*y  6x
Differenting w.r.t. “x’ twice we get respectively e a—2(3x ) andF =—
x” a
5732
T 2 32 32
dx _ a (a4 +9x4) a> (a4 +9x4)
d*y 6x - a’ 6x 6a*x

—5 2
dx? a
Example — 5 : Find the points on the parabola y = x> where the radius of curvature is 4.
Solution : The given curve is y = x2. (D)
Let the required point be (x, y,), so eq" (1) gives y, = x;
dy d’ y
From eq” (1), ~= 2% =2% at (x,, ;) and -5 =2 at (x,,1)
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[1+(ay /dx)zJ]}/2 (1+4x2)"

.. t > = =
pat (x.) a2y dx’ 2

(1 + 4)(12)3/2 32

:4:>(1+4x12) =38

=S 1+4x2 =(8) =4 = 4x? =3=x, =+/3/2

2_3 V3 9 V3 9
SV =X e Hence the required points are B and 57

Example — 6 : Find the radius of curvature of the following curves.
(a) x = a(cost + t sint), y = a(sint — t cost) [B.LU.T- 2012
() x?? + y?? = a??, at the point (0, a) [B.PU.T- 2011
Solution :(a) Givenx=a (cost+tsint),y=a (sint—tcost)
dx

o a(—sint+tcost+tsint)=atcos t
t

d
Y _ a(cos t —cos t + tsint) = at sint

dt
dy _dy [dx _ atsint _
dx dt!/ dt atcost

tant

2y , dt sec’t  sec’t
S>—S =y =se t—="—"""=
dx dx atcost at

(1 + tan® 1)3/2

32

1+y12) sec’ t 2 \¥2 at

.. We know that P = = = (Sec t) X S =at
b2 at sec” t

=p=at
b) 4P =g
Differentiate w.r.t x we get

1

Loyl dy dy yl/3
G A N A
™ de T

1 ) 1 _
1 3d 517

P 3.3 l_ys.fxs
Ly T e 73

a2 =0 23

X X

1y 1 1
1 yi|x3  y3 1
EY 1 D R I PO
x3)y3 X3 dx !
= ¥3
2/3
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11 33 | x2/3+y2/3
S|l T T A S| 25 A 23 253 a*?
3y§ _3 Y _lx ty T X431
S AR— 27 3 x4/3y1/3 3x*y
(1+ 2)3/2
y
We know p = 1
%)

23 = =—.
X 23 23 [T

( 2/3 j
1+~
273 32
x _(xz/s Jryz/sj/ . 3x4/3y1/3 {am )3/2 3x4/3y1/3 a 3x4/3y1/3
- 23 =—
a

or p=3 (axy)"”

p:ﬂ(oj) =0
Example — 7 : Show that the ellipse x =a cos t,y = b sint, a > 0, b > 0 has its largest curvature on
its major axis and its smallest curvature on its minor axis.
Solution : Equation of the ellipse is

x=acost;y=bsint..... (1)
x'=—asint;)" =bcost
x'"=—acost;y" =—bsint
Curvature p = x'y" —x”g;z' _ (-asint)(=bsint) - (—GCOS;)Z(bCOSt)
(x'2+y'2) (azsin2[+b2 cos? t)
ab(sin2 { + cos’ t)
p =
[az sin’ ¢ + b* cos® t]]%
ab
p= -
[az(l—c0s2t)+b2(1+cos2t)]]
ab

(@ +57)(a> = 5?)cos21]
(1) p will be maximum, when cos 2¢ is maximum and max cos 2¢ = 1
i.e., cos 2t = cos 0, cos 27 SLt=0,7
S From(1),x=+a,y=0
. p is maximum at (a, 0) and (—a, 0)
i.e., p is maximum on its (a, 0) and (-a, 0)
(i) p will be minimum, when cos 2t is minimum and minimum value of cos 2t = —1
T T

c2t=m, — SLot=—, = L x= =4+
2t=m,— 1 ) x=0,y b

.. p is minimum on minor axis.



Curvature
-
Example — 8 : Show that the radius of curvature of any point of the astroid x = a cos® 6,y = a sin*0
is equal to three times the length of the perpendicular from the origin to the tangent.
[B.PRU.T. - 2008, 2014, 2016
Solution : Given that x = c0s°0, y = a sin’ 0

70 = —3acos’ 0sin 0 and ? =3asin* 0.cos O

dy dy do 3asin® Ocos O
=y =——X—=—"————=—fan®
dx do dx 3acos” Osinb
dy 2, d0 s 1 B 1
- dx? BRI edx = et O 3acos?0.sin® 3acos’Osind

Now equation of the tangent at any point 6 is
y —a sin*0 = —tan® (x—a cos’0)
sin @
=>y- asin®®=—x——+asinB.cos* 0
cos©

= ycos® —asin’ 0.cos® = —xsin® + asind.cos> 0
= xsinb+ ycos0 —asin Ocose(sin2 0 + cos> 6) =0

= xsin0+ ycos0 =asind cos6

.. Length of the perpendicular from the origin (0,0) to the tangent x sin® + y cos6 — a sin®.
cos0 is

_0+0+asin6.cosO
\/sin2 0+ cos’ 0
Now we have to find ‘p’

=asin®.cos0O

(1 + y12 )3/2

Y

We know that p =

3/2
1+tan’0 4 .
() i 3005 Osin®

1 cos® @
3acos* 0.sin®
or p=3asin6.cos6
= 3 x length of the prependicular from the origin to the tangent.
Example — 9 : Show that the radius of curvature at a point of the curve x=ae® (sin@— cos0) and

y=ae’ (sin@+ cosb) is twice the distance of the tangent at the point from the origin.
[B.RU.T. - 2012

Solution : Given that y = ae® (sin0 + cos0) and x = ae’ (sind — cos0)

= Lid = ae®(cos 0 — sin0) + (sin + cos 0)ae’

= . . )
ae® cos0 — ae® sin0 + ae® sin® + ae® cos© =2ae’ cos0
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dx . .
and oo ae’(cos© +sin0) + ae’ (sin® — cos0) = aee[(cose +5in0)+ (sin6 — cos@)]
=2ae’ sin®
dy 2ae” cosO
Now =——F——=cot0
dx —n 2ae’ sin®
2 2 3
Then d )2/ _y, = —cosec 2, de __ coseec' 0 :_cosece 0
dx x 2ae” sin 2ae
32 32
(1 +y12) (1 +cot* 6) 3 2ae”
Lp= =- 3 =—cosec’O X ———— __ 9,a0
V, cosec’® cosec’®
2ae®

Now the equation of the tangent at any point ‘0’ on the curve is

cos((;) {x ae® (sin® — cos 9)}

y—ae’ (sind + cos ) =

= ysin0 - ae’ sin® 0 —ae’ sinb.cosO = xcos®— ae® sin6cos0 + ae’® cos* O
= xcos0—ysin® =—ae
Then length of the perpendicular form the origin to the tangent is

0+0—ae’ 0
P =ae
sin” 0+ cos” 0
i.e. The radius of curvature = twice the distance of the tangent from the origin.

X
Example — 10 : Find the radius of curvature for \/; - \/% =1 at the points where it touches the co-

ordinate axes.
Solution : The given equation of the curve is

Eofo y

Since the curve touches to the co-ordinate axes i.e. to x- /
axis and y-axis, hence they must be tangent to the curve 4y
(fig. 2.5), X-axis will be a tangent at the curve at (a,0)

and y-axis will be tangent at (0,b)
Radius of curvature of the curve at (a,0) where x-axis is . <

a tangent to the curve.

X=a

+ .
Shifting the origin to (a,0) equation will be 1} Al \/7 =1 (Fig. 2.5)

Squaring both sides,

I P ) y( +1) 1
a b b\a
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Example —

Solution :

XY, z(zﬂ)
a b b

a
x* )P xy  y(x
Again Squaring = ~ 4+ = + 22 =4 = 41
s a s a* b ab b(a )
2 2
X Y Xy Y
=+ 5-2—-4-=0 ... 2
a’ b> “ab b @)

Dividing the lowest degree term from equation (2), we see the x-axis is the tangent to the
curve at (a,0)
Now dividing equation (2) by y, we get

lﬁy2x4_

2

LoX
Taking limx — 0 and y — 0 that /im —=2p
x—0 y

(Newton’s formula), we get

1 4

— 2p-0-0-==0

a’ P b

Lo b 2
P= 2 TP

In the same way by shifting the origin to (0,b) where y-axis is a tangent to the curve we
find.

o
a

11 : Show that the ratio of the radii of curvature at points on the two curves xy=a’> and

x’=3a’y. Which have the same abscissa varies as the square root of the ratio of the

co-ordinates.
The two given curves are

Let (x,y,) be any point on (i) and (x,y,) any point on (ii)
Diff. (i) w.r.t x we get

d d
Zy=022= 2 Gip 2| —n
dx dx x dx (51)

Again differentiating (iii) we get
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d’y 2
— 2
dx? x
32
(xz +y12) X2 x2 2
= = - =
x? 2y 2xy, N
4, 4\
x"+a .
_( _ ) ...... @iv)
2x7y,
Again from curve (ii), we get
d 2 2
3% =322 :ﬂ:x_z :>d_;/:2_’2‘
dx dx a dx a
. dy} x? d2y} 2x
o :—2’ STy =
dx (X’J/z) a dx (X,)Q) a
*. Radius of curvature of the 2nd curve
dy " x? V2
1+ o 312
o (%) [] rtat)
~ P2 dy 2x 2atx (V)
dx? a’
4, 4\32
N ol (x ta ) y 2xa* at at
ow — = = =
Pr 2 (xfeat)” @
a* 3/2 a’
Nowwhenxy1=a2:>x:y— =X :y3/2 :>x3/2:aﬁ [y,
1 1
P _ a' »"?

Now (vi) willbe o R
P2 3/2 a\/_ [ 3n \/Z

e

3
Example — 12 : Show that T\/_ is the least value of | p | for y = logx

Solution :

Given that y = logx

dy 1 dzy 1
o> —=y == =——
ar B . and —5 0 =), 2

(V1)
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Pe 2 ) _Lz - X’
X
21 32 2 32

)

—X

1
p x%(x2 #1)2.2x-1(x> +1)"

E | p| = xz

1

(] ) g 1)
= 2 = 2 - ’ x2
For maximum and minima of | p |
< ipi=0

Let e pl=

1

2 T(re2

_ (x +1)2£2x 1) S

X
—2x2-1=0 ¢ x?+1 gives imaginary values)
=>x= i%

d? : 2 1y1 1

Now?h)I:(x2 +1)2(0 +x—3)+(2—x—2)z. —— 2x

2 x2+l+ 2x% —1

X x\/x2+l

B tti | t i |p| is + (i e 30)
X =— _— 6= —
y putting ek we ge e p| is +ve NG
dif x:__l dz is th ie—ﬂ
and i 2V get e |p| is the | & NG
1
So minimum value of | p | can be found out by putting * = f

3\(*3)
(1 + x2)3/2 (2) 2

pl=i——L— |2 3
X 2

.. Least value of | p |

32
)
SN2

B 1

1 xV2
7 i

Sl

V3.
or |p|=T minimum
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Example — 13 : Apply Newton’s formula to find the radius of curvature at the origin for the cycloid
x=a (0 +sinb),y=a (1 - cosO)
Solution : Here x = a (0 +sinB) y = a (1 — cos0)

x dy .
——=a (1 +cosB) —< =asind

do do
dy
. Q:ﬂ: asin® =tan9
dx dx  a(1+cos0) 2
do
d
-'-—y=0,when6=0
dx
Here initial line is tangent to origin
2 2(0+sin0)’
Then P = lim=— = hmw

6502y 050 2q(1—cos)

a _2(6+sin6)(1+cosﬁ)}

60 2 sin 0

a —2(1+c0s9)2 —sin0(6+sin6)
60 2 cos0

= 4q (by Hospital’s Rule)
Example — 14 : Find radius of curvature p at the pole for the curve r = a sin n6, by Newton’s method.
Solution : The curve is » = a sin n0. Here ‘r’ and ‘0’ are 0. Hence initial line is tangent to the curve at
origin.

 fim - = [jm 451010
We kl’lOW, p= 0020 T 650 20

. sinn® na na
=lim——— —=—
60 no 2 2

3a 3a
Example — 15 : Show that the curvature of the point (_ _) on the folium x° +y* = 3axy is

272
—8+2/3a.
Solution : The given equation is x* + y* = 3axy
Diff. both sides w.r.t x. we get

dy dy 2 ) dy dy
3x2 +3y = =3ay +3ax— = x* + 1y = =ay + ax.—
X y i ay + 3ax i X" +y e ay + ax p (1)

dy _ ay—x2

dx  y* —ax
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3a  94° 6a* —9a°
ﬂ} I R R S A
dx (Lﬂ}j) 9¢>  3a 94> -6a> 3ad’
22 I

“2 4
Again Differentiating (1) w.r.t x we get

2 2 2
d d
2x+2y(ﬂ) O S . iy

x
d dy\
2 2ay—2x—2y(y)
dy  dx dx
== 2
dx V- —ax
3a 3a 2
dzy 20(_1) — 2(2) — 2(2)(—1) 32
:>_2 = 3 —_-—
dx (Sa 31) 9a 3a 3a
7% _ a2z
4 2
3a 3a
Hence the curvature at 7 7
_32
i l: . 32 A 372 32 5 82
i.e. === __oNZs
p (1+J’12) {1+(—1)2} 3a 3a

Example — 16 : Find the point of the curve y =e*, at which the curvature is maximum and show that
the tangent at the point forms with the axes of co-ordinates a triangle whose sides

are in the ratio 1: \/E\/E .
Solution : Given that y = ¢,

2x )32 L2 )2
.'.p:(1+e—) ........... (A) '.'p:m
e’ Vs

x 31 2x%2 2 _ (142" 32 x 2xl 2x 2x
dp e.E( +e )..e —( +e ) .e e<1+e )2[36 —(1+e )]l

Now — = =
dx e2x e2x

For ‘p’ to be maximum or minimum,

N e I

dx o2

2x a1 :>2x=logl(--a":N):>x=llogl[ N=
=2e —1=0 =" = > U 51087 (log,N =x)
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From (A) we conclude that, if x — oo then p — o and when x — —o, then ‘p > must have the
minimum value i.e. zero. (fig. 2.6)

1
Thus for x = log bx the value of ‘p > must be maximum
1,1 1
—log— log, | 7= 1
.'.y:exzez Z=¢ \/E:ﬁ

%)

l\)l»—
)

1
So the required Point at which ‘p’ is maximum is ( 08

. : lo
.. Equation of the tangent at P ( g > J_)
) B
-~ Slope of tangent i.e.
1 1 ( 1 1 1o
y———==—F x——log—) dy  Slegy 1 P
2 T2) |- =e =
22 dx V2
1 1
:>x/5y—1=x—510g5 0 A
1 1

:x—yJ_:ElogE—l (Fig. 2.6)

Reducing to the intercept form, we have

al + Y =1

1 1 1 (1 1
—log——1 ——| —log—-1
227 T (2 s )
, . 11 . . 1
". x-intercept i.e. 0A=510g5—1 and y-intercept i.e. OB—T Iog——l [length

cannot be —ve]
Sinec OAB is a right angled triangle, hence

1.1 Y 11 1 .\
AB=|[~log~—1] +=[~log——1
\/(2%2 ) 2(20g2 )
1.1 1 NN
(Lot 1+ 1) =2 (Lot 1
(2 2 )( 2) ﬁ(z 2 )

—log—-1

. 1 1 1 1 V3

. lengths of the triangle OAB are Q’(_[ —_ 1) (_1 - 1)_
NN R I A TR PR N

So the required ratio of the sides of the triangles are 1:4/2 :4/3
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Example — 17 : The tangents at two points P,Q on the cycloid x = a(6 — sin8), y = a(1—cos6) are
at right angles. Show that if p, and p, be the radii of curvatures at these points, then
pi +p5 =164’

Solution : Equation of cycloid is

x=a(0—-sinB), y=a(l-cosH)

% =a(l—cos0) and % =asin®
. 0 0
dy asin® 2.sin E.COSE COSE 0
L= = =cot—

Tdx a1l - cos9) 2 sin? g Sin—

0
. Slope of the tangent atP = cot 5

Since tangent at Q is perpendicular to that at P. (.. They are at right angles)
0 o ©
. Slope of the tangent at Q= —ZCIHE =cot| 90" + B

0
Ifd)betheangleatQ,then¢:2(900+5)=180+9=ﬂ+9
d’ 0 1 do 1 1 1

207 4(1-cos0) 4asin4g

Yy
Now —5 =—cosec” —.—.— =
dx 2 2 dx 2 sin

.. Radius of curvature at P i.e.

Y 32 -
y
{H(dx) } ) (1+cot23)

pl = dzy - B 1

dx’ 4asin® 9
2

3 .40
=—cosec 5.4asm —

)
=—4asin By (Numercial value)

Putting w + 0 for 0 in the value of p, we get

p, =—4a sin(900 +9) =—4a cos9
2 2

0 0
Lpiapl = 16412(sin2 Py + cos? 5) =16a*

Example — 18 : If p, and p, are the various of the extermities of a focal chord of a parabola whose

semi latus rectum is ‘I’ then prove that (p,)fm +(p, )% =(1)s.

Solution : Let the equation of the parabola be y* = 4ax. Its focus is (a,0) and semi-latus rectum /=2a.
Any point ‘p’ on the parabola is (af, 2at)
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Let Q be the other extermity of the focal chord through P, then co-ordinates of Q are

a 2a
(%)
dy _2a  dy _2a 1
From (1), 527 N dx:|(mz‘2m) B 2at B t
) dzy_ 2ady  2a 1 _ 1
AGN G T =T T 4 2ar

_ 3
. AtP P = 7y 1 T f (-2ar’)
dx? 2at’
32
=—(1+7) (+2a=1)
2132 .
= l(1+t ) ............ (1) (Numerical Value)

1
Replaceing ¢ by 7 for the point ‘Q’

1?1 312
Py = 1(1 +Z—2) :F(l ) )
2
Now from (1) p;?7 = [7(1 + 12)71
2 172/3 .

and from (2) p,3 = = (1+7)

2 2 2 (1442
o) +(pz)72 =13 (1+ t2)1|:1 +tL2} E (1+7)

=1

[SSRR )
[SSARS)
[SSAR )

or (p) 3 +(p2)

Example —19 : Prove that for the ellipse — + b =1, the radius of curvature 'p' = pi whese ‘P’
a

is the perpendicular from the centre upon the tangent at any point (x,y).
[B.PRU.T. - 2009, 2011

2 2

Solution : Equation of the ellipse is — + A
a

bz
or b*x? +a’y* = a’b* (1)
Differentiating w.r.t x, we get

dy
b22x+a*2y==0>—=-—=
X+a 2y Dy Q)
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—_—
We know that any point on the ellipse is (acos ¢, bsind)
. ﬂ} _ﬁ acos¢ b cos
Cdx (acos.bsing) a* bsind a sin¢
Again from (2)
dy
1 L
d_l));__éy :dx __aly__b2 x
dx a y Tdxe xPy
- 2 x& B b (a2 + b2
pEae y P 2y P
b, b4 b s
= b2)=— —-cosec
a*y ( ) a2y @257 sin® § 2 ¢
32 30
()] pesey

e 5 a3, 32
©p= dx _ a® sin® ¢ (a2 sin® ¢ + b* cos® d))/ a’sin’ o
P = B = = X

dy —écosec3(|) a’ sin® ¢ -b

dx? a

32
(az sin* ¢+ b* cos® (I)) !
= 3)
ab
From co-ordinate geometry,
Equation of the tangents at (a cos ¢, b sin ¢) is
xacos ¢ N ybsing

2 2
a b

1

= icosd) +Zsind) =1
a b
.. Length of perpendicular from origin to the tangent
1 3 ab
\/cosz ¢ N sin® ¢ \/b2 cos® ¢ +a’ sin’ §

2 2
a b

ie. P=

1
. =~ ab
or, (bz cos> b +a’ sin® ¢)2 =—

Putting this value in (3) we get

ab 3
P a’b?

ab P’
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2.5:

Note :

Radius of Curvature at the Origin

There are methods of finding the radius of curvature at the origin. Now we shall discuss them.
Newton’s method of finding the radius of curvature at the origin :
When the curve passes through the origin and the axis of x is the tangent at the origin, we get

£) e

f(0)=0and (5] =0.ie.f(0)=0

Now by Maclaurin’s theorem y can be expanded as
2

y=3(0)+x1"(0)+ [%J £17(0) + (%J 17 (0)+....

2 3
y=0+0+ [%Jf’ '(0)+ [%Jf’ "(0)+... using equation.

1 ., X
20+

Since the curve passes through the origin, therefore x - 0 and y — 0

£71(0)+.

Dividing both sides x* we get lz =
x

Hence taking limit of both sides of equation when x — 0, y — 0 we get,

) 1
lim— = Y /""(0) [Other terms vanish]

3/2
[1 + {f'(O)}z]] Lo .
oy @=L o

Similarly, we can prove that if a curve passes through the origin and the axis of y is the tangent

.. p (at the origin) =

2

there then p (at the origin) = lgm 0)2/—
x—>0,y—> X

The above two formulae are known as Newton’s formulae.

If ax + by = 0 (a, b are real constants and a” + b* # 0) be the tangent at the origin, then the
radius of curvature at the origin is given by

1 2+ 2
p=—Va2+p? lim || 3
2 x>0\ ax+by
y—0
vy, a
X b

If a curve passing through the origin be given by a rational integral algebraic equation, the
equation of tangent (or tangents) at the origin is obtained by equating to zero, the terms of
the lowest degree in the equation.
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2.6:

2.7:

—_—
For example, if the equation of a curve be x* — y? + x> + 3x%y — y® = 0 the tangents at the
origin are given by equating to zero the lowest degree terms in the equation of the curve,
ie,x*—y*=0,ie,x+y=0andx—y=0.
If a curve passes through the origin and is given by a rational integral, algebraic equation, then
the tangents at the origin can easily be obtained by equating to zero the lowest degree terms in
the equation of the curve.

Expansion Method for Finding the Radius of Curvature at the Origin

When a curve passes through the origin, but neither of the co-ordinate axes is a tangent at the
origin, we cannot apply Newton’s formula to find the radius of curvature at the origin. In such
cases we can apply the following method known as the expansion method.

Since the curve passes through the origin, therefore f{0) = 0, i.e., the value of y at x =0 is 0. i.e.

f(©0)=0
Let(dy/dx) o = /'(0)=ct and (& /dx?) | = 1" (0)=p

51372
(1 +a )
.. p (at origin) =
p
’ xz (N
Now by Maclaurin’s theorem, we have =(0)+x/"(0) + [EJJ[ (0)+..

5 .
=ox + EBx +... because the curve passes through the origin.

To get the values of o and § we should obtain from the equation of the curve an expansion for y
in ascending powers of x by algebraic or trigonometric methods. The coefficient of x in this

1
expansion will be equal to a and the coefficient of x* will be equal to EB as it is clear form the

Maclaurin’s expansion for y.
Putting these values of o and B in eq”, we shall get the p at the origin.

Newtonian Method
2
X
If a curve passes through the origin and the axis of x is tangent there, then hm2—y asx — 0 is the

2
0
radius of curvature at the origin. Now 2_y assume the indeterminant form (6) is x—0

X2 2x 1 1
lim—=Ilim—=lim—=
x—0 2y x—0 2y x—0 y Vs (0)

(1+y12)3/2 _1+0)” 1
V2 ¥,(0) »,(0)

We know p =

2

Thus at the origin where x axis is a tangent i.e. p = lim—
x—0 2y
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2

and where y-axis is a tangent at origin (0,0) to the curve, we have p= Zin(a) P
y-02x

These two formulaes are given by Newton.
Generalised Newtonian Formula :
If a curve passes through the origin and x-axis is the tangent then we have

x4y x2+y X .

lim 2y = lim 2 2 = lim 2y = p at the origin (fig. 2.7)
Here x* + y?= OP? is the square of the distance of any /):
point P (x,y) on the curve from the origin ‘O’ and ‘y’ is
the distance of the point ‘P’ from the tangent x-axis at
zero. If OT be the tangent at any given point ‘O’ of a P
curve and PM the length of the perpendicular drawn
from any point P to the tangent at ‘O’ then the radius of

2
curvature at ‘O’ is hm2PN

. When the point ‘P’ tends__ ~_|
(0] N T
to zero as it’s limits. (Fig. 2.7)

Illustrative Examples

Example — 1 : Find the radius of curvature of x>+ 2x + y’= 0 at the origin
Solution : The given curve is x* + 2x + 1> =0 (1)
Differentiating eq® (1) w.r.t.x we get

2x+2+2yj—y:0

dy\’ d’
Differentiating eq® (2) w.r.t. x, 2+ 2(61_1/) +2y (_J;J =0

1 1
:>1+(x+1) +yd);:0:>d );:—— 1+(er J
y dx dx y y

23/2
oy 1+(x+1) .
. [1+ (dy / ax)’] v , 1+(x+lJ
. pat (x,y)= = = —
pat (x,y a2y / dx’ 1{1 (x_’_l)z} y
+

y y

neglecting negative sign

= J(x+1)7 +)?

- patorigin =,/(0+1)* +0? =1
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Example — 2 : By using Maclaurin’s expansion, find the radius of curvature at the origin of the
curve y= x’+5x’+6x.

Solution : The given curve is y= x*+5x>+6x (D)
which obviously passes through the origin.

2
Let (ﬂ) =a and [d—f] =B
dx J)0,0) dx (00)

1
Then Maclaurin’s expansion, we get for this curve = ox + EBX 2t ..(2)

Comparing (1) and (2) we get o =6, g =5iep=10

B 10 10
Example — 3 : Find the radius of curvature at the origin of the curve

32 i
1+a? 1+36 1
Hence p at the origin = [ j = ( ) = (37\/ 37)

Y -3xy—axl+x7 +xty+y’ =0

. . 2 . .
Solution : Putting y = o + Ex +... and equating coefficients of x? and x* equal to zero we get

2/
, 3p
a0 —30—4=0 - () and0€[3—5+1=0 ..... ()

Equation (1) gives o= —1 and 4
From (2) we get, when oo =—1 and = 2/5 and when o = 4, f =-2/5

(1+02)”

B

.. Radius of curvature at the origion=

)32
. When (o = 1, B = 2/5) radius of curvature at the origin = % =52

1+47
and when (o = 4, § =-2/5), radius of curvature at the origin = ( +2 /)5 =— 5

3/2

8517

Therefore radius of curvature at the origin are 5,/ and —

Example — 4 : Find the radius of curvature at the origin for the curve a(y? — x?) =x°

Solution : The given curve passes through the origin equating to zero the lowest degree terms in the
equation of the curve, the tangents at origin are y* — x? =0, i.e., y = + x. Thus neither of the
co-ordinate axes is tangent at the origin. So we can not apply Netwon’s formula for finding
p at origin.

3
. 2 _ 2 X 2 X
From the equation of the curve we have ¥~ =x" +—=x"| [ +—
a a
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1/2
1
y= ix(l + %) = ix(l + 5§+) (by binomial theorem)

Let(jﬁ) =»(0)= O‘alnd[ill yJ »,(0)=p

Then by Maclaurin’s expansion, we get for this curve as

y= y(0)+xy1(0)+ yz(0)+

ie y=ox +5Bx2+...

1
Comparing eq"s (1) and (2) we geta. =1, B = Lo =-1,B=——

51372
(1 +o )
Now p (at origin) = B
1 1+1)%?
Whena=1,B=;,wehavep(at0rigin)‘( 1/) (2\/_)

1 . 1+ 1)3/2
and when oo =1, B = e have p (at origin) = ——— (2\/_)

a
Example — 5 : Apply Newton’s formula to find the radius of curvature at the origin for the curve
58+ 7y +4x%y +xp? + 2xX7 + 3xy +y? + 4dx = 0.

Solution : The given curve is 5x° +7y° + 4x?y + xp” +2x> +3xy+y* +4x =0

The given curve passes through the origin (0,0). Equating to zero the lowest degree terms
in the equation of the curve, we get the tangent at origin as 4x = 0, i.e., x =0, i.e., y—axis

2
. ; J
By Newton’s formula p (at the origin) = _)Z(l)’;?_) 0[;}

Now dividing each term in the equation of the curve by 2x, we get

5., () 1, 3
—x"+7y| — |+2xp+=y  +x+=-y+—+2=0
SR T M TR T A

2
Taking limits of boths sides of eqn (1) when x—0, y—0 and remembereing the sz [;x j =p

(at origin) we get
0+0.p+0+0+0+0+p+2=0i.e. (at origin) p=-2 =2 (numerically).
Example — 6 : Apply Newton’s formula to find the radius of curvature at the origin of the following
Curves.
(@ x'—y'"+xX° -y’ +x7—y’+y=0 (b) 2x' + 3y’ + 4x%y +xy —y’+ 2x =0
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Solution : (a) Equating to zero the lowest degree termi.e. y = 0. It is clear that x-axis is the tangent to

2.8:

Or,

the curve at the origin.

o . 2 x* 3 x? 2 x?
Dividing through out the equation by y we get X 7 -yt x.7 -y +7 -y+1=0
Taking limits and x — 0, y — 0, we get
2 2 2
Zim(xz.x__y3+x.x__y2 +x__y+1J:0 ................... (1)
x—0 y y y
2 2
. X X
But according to Newtons formula p = lim — = 2p = lim —
x—0 2y x>0y

So, (1) gives

1
0.2p70+0.2p70+2p70+1=0:>p:—5

(b) 2x'+3y'+4xy +xy—y’+2x=0
Equating to zero the lowest degree term i.e. 2x = 0

= x =0, it is clear that y-axis is the tangent at the origin. Now dividing by x, we get
2 2

2x° +3y2y—+4xy+y—y—+2 =0

x x

2
Taking limx — 0, y — 0. So that /im R 2p Newton’s form ......, we get 2p + 2 =0

>0 X
=p=1
Polar Equations
To prove that
ds
-

Find radius of curvature at any point P (r, 0) of the curve r = f(0)

2 d}" 2
re+ o , for the curve r = f(0)

Proof. Let s denote arcual length of any point P (r.0) form

some fixed point A on the curve.
We take another point Q (r + or, 6 + 36) on the curve

near P. Q(r + 3t, 6-30)
Let Arc AQ = s + 3s so that Arc PQ = 3s
Draw PM 1 OQ

PM = r s5in60, MQ = 0Q - OM
= (r+0r —rcos0)

= r(] - cosSG) +or = 2rsin2(%J +0or

Since PQ* = PM? + MQ?

0) |’
= r? sin® 80 + {2rsin2 (7) + Sr} (Fig. 2.8)
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2

. (36
5 ) 2 sm()
= (PO)” - r (M) + 2rsin(@)—2 + o
(30)° 89 2.(56) %0
2

. (66
(PO)*  (Arc PO)* _ (ﬁ) N (@) (2J Lo
(ArcPQ)zt (86)2 50 2 (626) 00

2

When Q — P, 86— 0 and chord PQ — Arc PQ
So we obtain

Sin @
. [ os : . o sind0O ? : . (80 2 or
lim|— | = Ilimr°|——| + lim<{rsin —

300\ &0 500 50 500 o (69) - 50
2

(dsjz ) (dr)z ds ) (dr)z

S| — | =ri+|—| =>—=,r +|—

do do do do

Again in the right angled APMQ

PM  rsin60  rsind0 ﬁ_ rsindd 60 Jds

PO PO & PO 80 &8s PO
When Q— P, chord PQ — Arc PQ and ZPQM — ¢

sin ZPOM =

. do
So we have sin¢ =r—
ds

., 30
MQ (r+3r)—rcosd0 2rsm2(2)+5r

Again cos ZPQMZ

(50
,(86) S’"(z) 80 55 dr 50 Os
=2rsin| — —

2 '2.(89)6s'PQ+66'6s'PQ
2
As Q > P, 86 —0, chord PQ — Arc PQ and ZPQM — ¢
So we have COS¢=O+£.£ :>COS(1)=£
do ds ds

p do
ds do
Hence tand = _ds__ I’(—)

(5)
ds
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do
-'-mn¢=”—r,here\y:6+¢

_dy _do dp _do db d§

ds ds ds ds do ds

dy _ do d¢)

—=—1+— . ~
= s ds ( g0 ) e (1), again tand =

7

(&)

Differentating both sides w.r.t. 6

drY  d’r
do_\do) ~"do>
We get sec’ ¢% = (dr )2
do
ar\  d*r (di’)z_rdzr
do___ 1 (de) I N ! o)  do’

B (1+mate)| () @ 1+r2(d9)2 (dr)z
do dr do
(drjz dzr
ar) _.ar
dy \ de do?
=S —

dg 2 ( df' )2
ro+| —
do

Since from equation (1)we have, dy = d_e(l + @)

ds ds do
1 |, \do do?

2 2
"+ (dr) P (dr)
do do

_ds __ ()
dy 421 =
dr d?
where’i = —~ andr, = —Z
do

do



