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Vector Integration
Applications

5.1 : Introduction

The concept of a surface integral is a natural generalization of the concept of a double
integral. There we integrate over a region in a plane and here we integrate over a piecewise smooth
surface in space. Any Integral which is to be evaluated over a surface is called a surface integral.

The definition of a surface integral is parallel to that of a double integral. Here we consider
a portion S of a surface. We assume that S has finite area and is simple, i.e., S has no points at
which it intersects or touches itself. Let f (x, y, z) be a function which is defined and continuous
on S. We sub-divide § into n parts S, S, ..... , S, of areas AA,, AA,,.....,AA , respectively. Let
P(x,, y,, z,) be an arbitrary point in each part S,. Let us form the sum

g, = Zf(xk’yk’zk) A4,
x=1

Now we let n tend to infinity in such a way that the largest part out of S, S, .....,S_shrinks
to a point. Then the infinite sequence J,, J,,.....,J has a limit is independent of the choice of
subdivisions and points P,. This limit is called the Surface Integral of F (x, y, z) over S and is

denoted by
J.J.f(x,y,z) das
s

Thus, ij(x,y,z) ds = lim Zf(xk,yk,zk )A4, , provided the limit exists.
n—»o paur

Surface Integrals:
Any integral which is to be evaluated over a surface is called a surface integral.
Suppose that a surface is bounded by a simple closed curve C as in the figure given bleow.
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Now the surface can be thought of as to have two sides separated by C of which one is
arbitrarily chosen positive and the other, the negative side. In what follows, we denote the positive
side by S. In the case of a closed surface, usually the outer side is taken as the positive side. The
unit normal at any point to the surface drawn in the positive side is denoted by n.

Consider a plane surfae whose area is 4. When one side of this surface is chosen as the
positive side S with n as the unit normal drawn to this side, the vector area of this positive side can
be specified by An. Also the area dS of one side of an indinitely small bit of a general surface can
be specified vectorially as dSn or simply as dS, where n is the unit normal drawn to this side.

Let f(x, ¥, z) be a vector function of position defined over the positive side S of a surface.
Let P be any point on the surface S and let n be the unit vector at P in the direction of the outward
drawn normal to the surface at P The f. n is the normal component of f at P The integral of f. n
over S is defined as

.[ fndsS

s
This is an example of a surface integral (sometimes know as flux).
Remark - 1 : Another example of surface integral is

”andS
S

Remark - 2 : With the different of surface area dS, we have associated a vector dS (called vector
area ) whose magnitude is dS and whose direction is that of n.

Then we have dS=nds
ond [[tnds={[tas
Remark-3: If f.n= (I)S(x, ¥, 2) )
then ”f.n ds = 'U(I)(x,y,z) das
S S

In particular if ¢ (x, 3, z) = 1, then “ dS will give the surface area of S.
s

Evaluation of the Surface Integral :

In order to evaluate Surface Integrals, it is convenient to express them as double integrals
taken over the orghogonal projection of the surface S on one of the coordinate planes. But this is
possible only if any line perpendicular to the coordinate plane chosen meets the surface S in not
more than one point. If the surface does not satisfy this condition, then it can be subdivided into
surface which do satisfy this condition.

Suppose the surface S is such that any line perpendicular to the xy-plane meets .S in no more
than one point. Then the equation of the surface S can be written in the form z = f (x, y).
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L. >
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e
Fig. 5.2

Let R be the orghogonal projection of S on the xy-olane. If y is the acute angle which the
udirected normal n at P (x, y, z) to the surface S makes with the z-axis, then it can be shown that

cos Yy dS =dx, dy,
where dS is the small element of area of surface S at the point P (x, y)
dxdy dxdy
cosy |n.k|

ds =

where k is the unit vector along the z - axis.

dxdy

Hence _[

For simplification of S.I. we have to take projections of the surface on the coordinate planes
suitably.
(a) When S is projected on xy-plane then

JFas.- H( il

(b) When S is projected on yz-plane then

is k.

-

J-F ndS= ”( ) where S,is the projection of S on yz-plane whose normal is

(c) When S is projected on zx-plane, then

J.FndS H( jq =,

Physically, if F represents the velocity of a fluid, then the total outward flux of I:) across a

-plane whose normal is j .

closed surface is the surface integral J? n dS. If the flux vanishes, then ? is said to be solenoidal.
S
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Volume Integrals :

Let 7 be the volume bounded by the surface S. Also let ' (x, y, z) be a single valued function
of position defined over V. Now subdivide /" into n elements of volumes Av , Av, .... Av . In each
part Av,, let us choose an arbitrary point ( x, y, z,). Then the limit of the sumX (x, y, z) Av, asn

—ocoand Av,— 0, if it exists is called the denoted by I_Uf (x,y,2z)dv .

If we subdivide the volume into small cuboids by drawing lines parallel to the three co-
ordinate axes, then dV = dx dy dz denote the element of volume. As volume element dV is a scalar,
there are only two possible volume, integral. Any integral which is to be evaluated over a volume
is called a volume integral.

f[faar o [[JFav =[] r(e.v.2)as dv oz

The results of integration are respectively a scalar and a vector.

Let 7= fii + f,] + f;k be any continuously differentiable vector function and a closed

surface in space enclosing a volume V, then the volume integrals are defined as follows :

(A) [Far :Hflhfzﬂfﬂ] av
vV

_zjﬁdV+]jf2dV+f3kjf3 av

(B) j[v FJdV Hj[ﬁfl % 6f3}dxd dz

(In (A) generally single integral is used due to single differential dV. If we consider dV = dx
dy dz then triple integrals are to be used.)

Other form is J(V X ;jdV.

Vv

It is often convenient to convert multiple integrals into others with fewer integral signs.
This is done by two important theorems, viz., Gauss’ divergence theorem and Stokes theorem of
vector analysis.

Note - 1. If we sub-divide the volume V into small cuboids by drawing planes parallel to the co-
ordinate planes then dv = dx dy dz

” odV =” 0(x,y,2) dx dy dz

- ~ ~ N
Note 2. If F=F;i + F,j + Fyk then

J‘U;dV = f”J‘Fl(x,y,z)dx dy dz +jJJJI’2(x,y,z)dx dy dz + IQJ”IQ(x,y,z)dx dy dz
Vv Vv Vv Vv
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Illustrative Examples

Example — 1 : Evaluate IF nds where s is the curved surface of the cylinder x* +y* = a?,

0 <z <2a
Solution : Let ¢ = x> +1* — a?

Vo =2xi +2y)

o 2xi+2y i+
L 2XiA2y x4y ('.‘x2+y2=a2)
\/4)c2+4y2 a
> S S B
F-n=(xi+yj+zk)~xl N_r Ty 4,
a a a

dz-dy  dzdy  dz dy

iii [xz+yjj

e

N

ds =

2.([ dy dz = T|:sinl (fﬂaa -dz = Tn dz =2mna

0 0

Example — 2 : Evaluate J-V.EdV where]‘l? ﬁ%ﬁ;j@ zk and Vis the region bounded by the

v
surfacesx=0,x=2, y=0,y=6, z=x" and 7 = 4.
Solution :The integration over the region v is covered by means of the element dx dy dz as follows :

(a) Keeping x, y fixed and integrating Z
with respect to z fromz = x* toz = A
4 (from P to Q in the elementary z=4
column) (fig 5.3)

(b) Then by keeping x fixed and .
integrating with respect to y from i |
y=0toy=6 (fromR to S in the ! i
elementary state), and ! P !

l |
! I
1 I
! I
1

(c) Finally integrating with respect to
x fromx=0tox=2 (fromAtoB
in the given volume.) = em-mmmm—mmmomo—— - Y
Thus the required integrals is X Fig 5.3
4

P (i sd)aa [ [ i o SE| aa
x=0Jy=0Jz=x —0dy— 2

[ [ star)i e i
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_ L{ (=i + 2 (4= %)+ 116 x)yk}yzédx

y=0

2
- [x(4—x2)62 +18(4-x"); +%(16—x4)6l€} dx
x=0

2 4 3 5 2
B RSN A T (PRS2 I PP
2 4 3172 s,
4 16 8 32 16+ . 128
4= -2 1882 |7 +3) 3222 |6k = 053220
(2 4)1 ( 3j ( j 641+183] +3- k

384 2[

=247 +96]+Tk =% 55+2o}+161€]

Example — 3 : Evaluate J-(Zx +y)dV , where V is the closed region bounded by the cylinder

V
z=4—x?and the planesx=0,y=0,y=2and 7=0.
Solution : The integration over the region V' is covered by means of the element dx dy dz as

follows : 7
(a) Keeping x, y fixed and integrating with

respecttoz fromz=0toz=4—x*fromPto -

Q in the elementary column. (fig 5.4) /7f
(b) Then by keeping x fixed and integrating ~

with respect to y from y =0 to y = 2 from

R to S in the elementary slab and

(c) Finally integrating with respect to x from
x=0tox=2.

Thus, the required integral is J(zx +y)dv Fig 5.4

vV

o I GRS o i N CAE) B

= f:oJ;iO(zx + y) (4—x2)dx dy = Jj=0{2x(4_ xz)[y](z) " (4 _xz)|:y72i| } g
B Jj:o{4x(4 B x2) + (4 - xz)'z} dx = Ij=0(16x —4x>+8 —2x2) dx

2 4 3P
=167~ 47— +8x 27~ _16i—4E+16 2.8 3 16416-10-80
2 4 3 o 4 3 3 3
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Example — 4 : Evaluate J-F- ndS where 7«“ =6zi —4j + yk and S is the portion of the plane

s
2x + 3y + 6z = 12 in the first octant.
Solution : First to find a unit normal drawn outward on the surfaces S.

N

Leto=2x+3y+6z—12
2 R(0.0,2)
Then ﬁ=—¢=—(2i +37 +6k) (fig 5.5)
|V¢| 7 \<‘ﬁ>
- S
F i = (62 - 4]+yk) (27 +37 +6k) ?040) y
P
_2, 12,6 (6,0,0)
A . Fig 5.5

Taking projection on xy-plane x

IFndS ”F dxdy ” (_ 12 gy)dxdy

6
7

6 12-2x
_ 12(12—2x—3y)_£+§y’1dxdy
2 20 7 6 7 7°[6

o2 12 22 123 12 6 7
:jj —— ==X V- —dxdy
) 76 76 76 7776

6 12-2x
:I [24 4 6y 12 6y}7ddy
. 7 777 7777 |6

0
6 12-2x 6 12-2x
0

JO 3 (12-4x)dy dx :%‘(';[(12—4x)y]03dx

= %J.(IZ - 4x)(12 - Zx)dx

6 6
4 2 ox*  x’ 4
=—|(18=9x+x")dx =—|18x——+—| =— =
9!( ) 9{ : 3}0 Sx18=8

Example — 5 : Let 7’ = 2xzi — xj + y*k . Evaluate ”J- F-dV where V is the region bounded by

the surfacesx =0,y =0,y =6, 7 =x% 7 =4.
Solution : To cover the region V' we first keep x and y fixed and integrate from z = x* to z = 4.
Then keep x fixed and integrate fromy = 0 to y = 6, finally, integrate from x =0 to x = 2.
Also we have dV = dxdydz
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) - =0 -4
Required vector volume integral = '[ '[ Fdv xi o
d _Lwy=06
> :
IJIF dx dy dz (fig 5.6) 5 -
% y= 0_!_’ z=x \ >
] . x=2
x=2 _y=6 z=4
= .[ { j (2xzi —xj+y2k)dz}dy X % Fig 5.6
x=0| y=0 z=x2

= T j.(16x—xz)f+(x3 —4x)j+72(4—x2)yzl€)dy}dx

x=0L0

- :(96x —62° )i +(6x° ~24x)  +72(4 - x* )k]dx

26 4 26 4 264

=i 2xzdzdydx — J xdzdydx+k dz dy dx
[|] [ devax—j | [xdzayav k] [ [ " dzay
00 002 00 x2

X X

= 1287 — 24 + 348k
5.2 : Transformation of Surface Integral Into Line Integrals — Stokes Theorem

Transformation of surface integrals into line integrals and conversely is done with the help
of a theorem known as Stoke’s theorem, given by Gorge Gabriel Stokes (1819—1903), an Irish
mathematician and physicist, who made important contribution to the theory of infinite series and
several branches of theoretical physics. Stokes theorem is an extension of Green’s theorem in
vector form to surfaces and curves in three dimensions. Under suitable restrictions

(i) on the vector F,

(ii) on the boundry curve C, and

(iii) on the surface S bounded by C.

Stokes theorem connects line integral to a surface integral.

In stoke’s Theorem, we require that the surface S is orientable. By orientable, we mean that
it is possible to consistently assign a unique direction, called positive, at each point of S,

and that there exists a unit normal ; pointing in this direction. As we move about over the
surface S without touching its boundry, the direction cosines of the unit vector ; should

vary continuously and when we return to the straight position, ; should return to its initial
direction.

The work performed by a vector field on a particle that traverses a simple closed, piecewise
smooth curve C in the positive direction can be obtained by integrating the normal component of
the curl over an oriented surface S bounded by C.
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Stokes Theorem :

Statement : If S be an open surface bounded by a closed curve C and F = f,i + f,j + f;k
be any continuously differentiable vector function, then (fig 5.7)

[Fdr = [ [eurt F.i ds = [[(V x F).ids = § F a7
c s s c
where 7 is the unit external normal at any point of S.

Cartesian form of stokes theorem in space :

The line integral of the tangential component of a vector function ;l (finite and
differentiable), around a simple closed curve C is equal to the surface integral of the normal

component of curve of ; taken over any surface S having C as its boundary.

Proof : Let the outward drawn normal vector 7i = [i +mj +nk be the unit external normal

at any point S. Here ;; make angles o, B, y with positive directions of x, ), z axes such that, let

F=fi+f,j+fk

[=coso,m=cos B, n=cosy. Also 7 =xi +yi +zk ,and dr =dxi +dyi +dzk

ie. ﬁzcosaf+cosBj+cosyl€. z
i jk
= |0 0 0| _ 2
CMFIF—aag VxF
hhf
(L) (L L) gL .
oy Oz 0z Ox ox Oy
s Curl F.ii=1 %—% +m(%—%J+n %—%
oy Oz 0z Ox ox oy )*

Also F.dF = (A + fo] + Sk ) i +dy] + dzk ) = fidx + fdy + fidz

.. Stoke’s Theorem takes the form

_(f;19:_9 9 _ 9 o _oh)
i;(fldx+f2dy+f3dz) _J-:';l(ay 62J+m(62 axjm(ax QJ ()

- ” {(% - %J dydz + (% - %j dzdx + (% - %dedy}
oy oz 0z Ox ox Oy
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Let z= ¢ (x, y) be the equation of the surface S whose projection on the xy-plane is S,. Then
the projection of C on the xy-plane is C, which is the boundary of §,.

fffl(xyZ)dx fﬁflxytb(xy) dx—ji{fl [, & (x, )] dx + 0.dy}

l

_ 0 _ oh , 9 0b(x,y) -
__J.é[afl[x,y,d)(x,y)]dxdy_—g[ay o }dd ...(ii)

The direction cosines of the normal to the surface z = ¢ (x, y) are given by

I m  _n ....(ii)
_00(xy) _0d(xy) 1
ox oy
_ Lo _ R dx dy
Also, dx dy = projection of ds on the xy-plane =ds. j = ds=—"—
n

From (ii)

foissapl=f[| 2T o= [T Dl g

Similarly, we can prove that

(22192 g o
PSR "y‘fi(” Loi%)a ™
jf3xy¢(xy) dz_JJ( 19 m%)ds ............... (vi)

Adding (iv), (v) and (vi) we get the result of Stroke’s Theorem.

o o) 2 2

:JJ %_sz oc+(afl f3)cos[3+ ﬁfz afl cosy ¢ ds
< oy oz oz Ox ox oy
Hence theorem is proved.
Note : Green’s theorem in a plane as a special case of Stoke’s Theorem.

Cartesian form of stokes Theorem for plane :

Let us take a system of Cartesian rectangular coordinate axes such that the plane of the
given surface S in the xy-plane and z-axis lies along the direction of th normal vector n.

Here, the normal vector is constant.

Let, f=fi+f,)+fik
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gSf.drzgSfﬂdg :gSf.t ds
ds
c c c
ar . .
(where I t is the unit tangent vector C)

)

2 ~ n ¢dx Ady "dZ
(flz +f2]+f3k).[1£+]g+k£jds

dx dy
—+ fo— |d.
(fl ds /> dsj *

aA-on A-on

(fldx + fzdy)

( % =0, as the tangent at any point lies in the xy plane)
s

Now, (f) curl f. ndS=<ﬁ curl £ kdS

c c
- Cﬁ 9% _ah dx dy
w\ox oy

Stoke’s theorem for plane becomes

_ ([ 22 9
(.f(ﬁdx+f2dy)—.g(ax adexdy
Let us, now prove it.

Let the region S be such that any line parallel to either axis meet the boundary C in at the
most two points.

Y C, y=0,(x)

0 »X
Fig. 5.8

Let the regionbe x = a, x = b,y = ¢, (x), ¥y = 0, (x), where ¢, (x) 2 ¢, (x).

The boundary C is split up into two areas C, and C, as shown.
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L[Z—J;dx dy = I;Uii?g—gdy}dx

=[] A (b ) = Ailrb)de =[S (xr)ds=[ S (xy)as

== (x.r)ds (@)
Similarly,
%, _
J‘Sj‘adx dy“ﬁfﬁ("’y)dy o (i)

. From (i) and (ii)

= §(fudy + fidx) = [ (%—Z—de dy

Hence the result.

If the region S is such that a line parallel to either axes meets the boundary C in more than
two points, we divide S into a finite number of sub-regions such athat the boundary of each is met
in at the most two points by any line parallel to either axis. By applying the above result to each
sub-region and then adding the results, we find that the theorem is true for S. This is because the
line integrals along the boundary curves will cancel in pairs.

Let F= fii + f,J bea vector point function which is continuously differentiable in a region
S of the xy plane bounded by the closed curve C.

Then [ F.di = [(£i + fo]) (axi+dy j) = [ fiax+ ray
C C

c
L ¢ of, of of, of
~ . |0 O a r oAy pfof, Of ||, _of, off
andcurlF.n:a 5 0k-{(01 OJ)+k[5X Gy}k_éx 3
fi fioo

Hence Stoke’s theorem JF“ dr = IJ Curl F.ids takes the form
c s
J. fidx + fody = J.J. 9 dx dy which is Green’s theorem.
c R A

Illustrative Examples

Example — 1: Verify Stoke’s theorem for the function F = x%i - xy; integrated round the square
in the plane 7 = 0 and bounded by the linesx =0,y =0, x=a andy =a.

Solution : Here F = x% —xy}'
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The curve C is the boundary of the square OABC in the plane z = 0, so that the sides OA,
AB, BC, CO and bounded by the lines x = 0,

y=0,x=aq y=a.

Here  di=dxi+dy ]

s F.di = x*dx—xy dy

Now E*;;:.df =§f(x2dx - Xy dy) = J-(xzdx - xydy)
c c 04BC
c_jS (xzdx - xydy) + 4) (xzdx - xydx) + <_j§ (xzdx - xydx) + 4) (xzdx - xydx)
OA AB BC cO
x=a y=a
= J‘ (xzdx —Xxy dy)+ I(xzdx —Xxy dy) (0, a)
x=0 at x=a, y=0 C < B (a’ a)
at y=0
(along OA) (a long AB) ,
y=0,dy=0 x=a,dx=0 A
0 0
+ J x2dx - xy dy J(xzdx — Xy dy)
= o 90,0 Aa, 0)
t =a at x=
(A long BC) (A long CO)
y=a,. .dy=0 x=a, .dx=0 Fig 5.9
a 0 0 0
= J x2dx — J v dy+ J x2dx + J( dx Ody)
x=0 y=0 x=a y=a
3]¢ 21¢ | .3]°
=x— —ay— +x— +0 :a_3_a_£_a_3:_£ (1)
3, 121, 131, 3 2 3 2
For surface integral,
A
- |10 0 0| » A
Cul p=-—- — A=k(-v=-0=—vk
ox 0oy Oz (r=0)=-»
2
x> =xy 0

Now positive unit normal to the plane z=0is /= .

Also element of area dS = dx dy.

—

oeure Foaa=—y l€l€=—

Thus J-J-curlF nds = I I —-ydxdy

x=0y=0

NN ’ ra’ @’ —a’ -a’
=—J. — dxz—I—dxz—[x]Oz—.az—
L2, 2 2 2 2
Equality of (1) and (2) varifies stokes theorem.
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Example -2 : Verify Stoke’s Theorem for the vector field F = (xz —y? )f + 2xy]‘ integrated round

the rectangle in the plane 7 = 0 and bounded by the linesx =0,y =0,x=a, y =b.
Solution : Let C denote the boundary of the rectangle OPQR, then C consists of four lines OP,
PQ, QR, RO in the plane Z = 0, so that the equationx =0, y =0, x =a and y = b.

F=xi+yj,dri =dxi +dy }f
F-dfz(xz—yz)dx+2xydy
> y=b
(ﬁF.dF: I [(xz—yz)dx+2xydyJ R N Q
c OPQR
x=0]
AX—=a
= '[+ '[+ '[+'[ [(xz—yz)dx+2xydy]
OP  PQ QR RO
L. Along OP :y=0,dy=0,x:0—>a > >
a © y=0 P *
- ~ 5 a3
[Frdr=]x dv="- Fig. 5.10
op 0
2. Along PQ :x=a,dx=0,y:0> 5
- b 2P
Ei;F-dF:J.2aydy=2a[y—} =ab’
PO 0 2
3. AlongQR :y=b,dy=0,x:a—>0
N 0 3 0 e
§F-d7=j(x2—b2)dx={——b2x} =ab’ — -
3 3
OR a a
4. AlongRO :x=0,dx=0,y:b—>0
.dr = —
JFrdi=o (+ F-df =0)
RO

Along (1), (2), (3)and (4)

N 3 3
- L.HS. =§F.a7 =%+ab2 +ab? —%+0=2ab2
C

Curl F = -
Now, Cur Ox oy Oz

x2—y% 2xy 0

For the surface, S, n = Kk , cure I_*lﬁ = 4yl€.l€ =4y
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R.HS. =churl§-ﬁd$=jj4y dydxzj'4-|:y—2}b
S 00 0 2 |

.. L.H.S. = R.H.S. Hence the Stoke’s theorem is verified.

dx = 2b2jdx —2ab>
0

~

Example -3 : Verify Stoke’s theorem for 7’ = (x2 + yz)z —2xyj‘ taken around the rectangle
bounded by the linesx=xa,y =0,y =b.

A
Solution : F = (x2 +y2)f—2xy} L F=xi+y)
- 2 o (—a, b) =b
dr =dxi + dyj C Y B (a b)
- —> A A N N
F-dr :§(<x2+y2)i—2xyj)-<dxi+dyj) X=—a x=a
C C > X
. D (-a, 0) O 0=0 A0
= §{(x +y )dx —2xy dy}
c Fig5.11
where C consists of AB, BC, CD, DA.
alongAB, x =a .. dx =0 and y varies from 0 to b
along BC, y =b .. dy=0 and x varies from a to —a
along CD, x =—a ..dx =0 and y varies from b to 0
along DA, y=0 .. dy =0 and x varies from —a to a
. §{<x2 + yz)dx —2xy dy} = J(xz + yz)dx —2xy dy
c 4B
+ j (xz + yz)dx —2xydy + J (xz +y° )dx —2xydy+ j(xz + yz)dx —2xydy
BC cD DA
b —a 0 a
= JO —2ay dy + J(xz +b2)dx + JZay dy + szdx
1] a b —a
3 - 0 3¢ 3 3
:—ayz‘b—i- T ibix +ay2‘ + :—ab2—2L—2 bz—ab2+2i
0 3 . b 3] 3 3
" §(x2 +y2)dx—2xy dy = —4ab? (D)

C

Now, find ” Curl F-A dS
S

i ik

cunF=| L L D) o)+ 2y -20) =y
Ox oy 0Oz
xi+y? 2xp 0
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7=k - Rectangle in xy plane.

- Curl F-it = —4yk -k =4y

J!Curl F-hdS = J£—4y ds =J}[—4y%=]}[—4y dx dy

i

- j .T —4ydy dx = j[—Zyz]de = T—szdx =[—2b2x]: — _4qb?
x=—a y=0 o 2
j! Curl F-ii dS = ~4ab? o

(1) and (2) are same .. Stoke’s theorem is verified.
Example— 4 : If ¢is a scalar point function, using Stoke’s theorem prove that Curl (grad ¢)=0.

Solution : Stoke’s theorem is _”curl I—; -ndS = '[I—*: -dr ....(i)
N C

N
Let F as the gradient of a scalar function.

e, F grad ¢ = V¢
.. (1) becomes

J.:[curl (grad ¢)-n ds = in)-dF (i)

F=xi+y] +zk , dif =dxi +dyj +dzk

and v¢:?7+?]+g—¢l€
24 4

vodi = g 00 g 00

S Vo-d 8xdx+8ydy+82d dd

- From (i), we get [ curl (grad ¢)-7i dS = [do =[¢ (x..2)] . =0 ..
S C

(- C is a closed curve, the lower and upper limits of the definite integral will be the same).
The result (iii) i.e., the surface integral is zero, is true for any surface S. Hence the integrand
must be indentically zero i.e., curl (grad ¢) = 0.

Hence Stoke’s theorem fi;F dr = J-J-Curl F-n dS takes the form.
C s

J. Sfidx + fody = J.J.[% - %j dx dy which is Green’s theorem in a plane.
v . ox Oy
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Example — 5 :Verify stokes theorem for a vector field I:) =(x2-y) i+ nyf in the rectangular
region of the xy- plane bounded by the linesx=0,x=1,y =0,y = 2.
Solution : For the verification of stokes theorem, we shall show that

SE;:;’)}” = ”curl ;ﬁ ds
C s
Fdr=((x*=y*)i+2xy ). (df +dy})
= —y)dx+2xydy
JJ.;ZI)r = ﬂ(x2 —yz)dx+2xydy}l,

S C

where C consists of OA, AB, BC and CO

§;.d7= ﬂi(xz —yz)dx+2xydyjﬂ+ ﬂ(x2 —yz)dx+2xydy]
c

Now

04 AB
s fle® =y g+ 2]+ (6 ) 2my| )
BC (6(0]

Along OA, y=0 .. dy=0 and x varies from 0 to 1.
Along AB, x=1 .. dx=0 and y varies from 0 to 2.
Along BC, y=2 ..dy =0 and x varies from 1 to 0.
Along CO, x=0 .. dx =0 and y varies from 2 to 0.
.. from (1),
NN 1 2 0 0
3§F.d r =jx2dx + j[0+2(1)ydy] +j(x2 ~Aydx + joczy
C 2

0 0 1

1 0
%3 L2 3
=5 +[y ]]0+ ?—4x +0

1 1
:§+4+[0—§+4}:8 .(2)
i ik
2 0 o 0 PN n R
curl F=| — — —=0+0+2y+2y)k=4yk
ox oy Oz

xr-y? 2xy 0

Also for the surface §, 7= k
2

: ”curz?" AdS= j j ayhRED j j4y dx dy = 4jdxfydy
+J . L 0

|k x=0 y=0 0

x=0y=0
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From (2) and (3), we have

> - >
E#;F.d r= ” curl F.ndS, which verifies stokes theorem.

Transformation of Volume Integrals into Surface Integrals and Conversely.
5.3 : Gauss Divergence Theorem

Statement : Let “V’ be a closed bounded region in space whose boundary is a piece-wise
smooth orientable surface S. Let F (x, y, z) be a vector function, which is countinuous and
has continuous first partial derivatives in some domain containing R. Then

[[[avFav=[[F.ias . (1)
d s

Where F.n is the component of F is the direction of the outward normal of S with respect
to Vand n is the outer unit normal vector of S.

In other world, the volume integral of divergence of a vector point function F taken over

the volume V enclosed by a surface S, is equal to the surface Integral of the component of F
taken over a closed surface S.

In compoennt of F =[F , F,, F.] and of outer normal vector 7 = [cosa,cosP,cosy ] of S of
(1) becomes

Iﬂ(f)F OF, ZF dedydz ﬂ (F, coso.+ F, cosp + F, cosy)ds
y z

= J. Fdydz + F,dzdx + F;dxdy
Proof : Triple integrals can be transformed into surface integrals over the boundary surface of a
region in space conversely. The transformation is done by divergence theorem, which involves
the divergence of a vector function F = [F, F,, F.]1 = Fi+Fj+ F31€ namely
divV = i + o + ok
ox Oy Oz
If we write F and n in terms of components, say,
F=Fi+Fj+Fk and /i=cosoi +cosB ] +cosyk,
and let Aids = (cosau + cosfj + cosylé)ds

where a, B and y are the angles between n and the positive directions of x, y and z axes,
respectively, then formula (1) takes the form
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(22 iy = [ s e st

Therefore dS coso., dS cosf and dS cosy are the orthogonal projections of the element area
dS on the yz-plane, the zx-plane and the xy-plane respectively. If we make a subdivision of S
by planes parallel to the yz-plane the zx- plane and the xy-plane, then the projections on the
co-ordinate planes will be rectangles with sides dy and dz on the yz-plane, dz and dx on the
zx-plane and dx and dy on the xy-plane.

Hence the projected surface elements are dy dz, dz dx and dxdy

[[ F s = [[ (Fdydz + Fydeds + Fdxdy)

Since S is an orientable surface, then, by definition, this means

JJFI coso dS =JJFI dy dz
s s

J‘:[F2 cosBa’SzJ-:[l’T2 dzdx &)

JJ[@ cosy dS =J-J173 dx dy
s s

Then relation (2), with the help of relations (3, 4, 5) may be written as

OF, OF, OF,
J-“[ax EJF_J dx dy dz _”dederF2 dzdx+ Fydxdy) .. (6)
It is clear that relation (6) is true, if the following three relations hold simultaneously :
J-J-J-aFl dyca’ydz:J-J-l’T1 dydz 7)
s

J[[rases|[res ®

J-J-J-aF3 dx dydz= J-J-F3 dx dy
s

Proof of Gauss Divergence Theorem : Y,
Let S be such a surface that a line parallel to z-axis meets
it in two points only. Denote the lower and upper positions
of §by S, and S, and let their equations be z = f,(x, y) and

1

N |

< |

z = f,(x, y) respectively. (fig 5.12) i S, i 0am i
We denote the projection of S on xy-plane by R. : L >y

Then 0 l/—x—l-ﬁ-i\u

RS

Sa(x,y) S~-_dy -~
F, 3
”j@ 3 dv dy dz = ”{ Py dZ]dx dy Fig 5.12
R fi(x.y) X
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= [[IFcx 207 axay
R

~ [ [[B( . £) = Byl )] dedy . (10)

A

Now for the upper position S,, dx dy = cos v, dS, = k.h dS

2

and for the lower position S|, dx dy = cos y, dS, = —k.f dS

1

a negative sign being taken as the normal to dS, makes an obtuse angle © — y, with k.
Therefore,

[[ 7oy r)axay=[ [ F k. ids, and ”a(x,y,fl)dx dy:”a koA ds,
R s, R 5
Substituting in (10) we get

J.J.J'aadxdydz=J.J.”3lg‘ﬁdSZ+J.J.”3]€'ﬁd51: leﬂlg.ﬁdS """ (1)
Sy M S
I”_aa?dxdydhﬂﬂlé.ﬁds ..... (12)
v s

I”—dxdde—”leé.ﬁds ..... (13)
N

Addmg (11), (12) and (13) we obtain the result (6).Hence divergence theorem is proved.

.U,[(aF % 6F JdXdde —j dedZ+Fdde+Fdxdy)

Illustrative Examples

Example — 1 : Verify Gauss’s Divergence Theorem for the function F = yi + x]’ + 7%k over the
cylindrical region bounded by x> +y* =9, z=0and 7 =2

Solution:R . H.S=Given | — vi+x) +2°k » divF =2

j“dzv Fav = ”Jzzdxdydz —2J”zrdrdedz

000

(Taking on cylindrical coordinate system) x =rcos 0, y=rsinf, z=z

23 [ 2 213
=2. J'J‘r{"‘zdz] drdd = 4 er dr.do
00 Lo 00
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2n 2 3
=4J{r_} e—lsjde—ls (2m) =367
2

o] J

(havf) (r,) (cor , otion )

OnS,z=0, F=yi +x and i =k

:>J-l_'; nds =
Si

OnS, F=yi +xj+4k,i=k .. F.i =4

[Fiids=[4.d5=45=4.n.3=36n(+)"=9)

5 5,

On S, 4 perpendicular to x* + *= 9 has the direction grad ¢.
Leto=x?+3)*-9

S_grad®  oxi+2yj  2x i

i + vJ _l
|grad ¢ | — /4x2+4y2 B [4 N 3()” +y])

R s A | 2
F.nz(yl' +xj +Zk).§(xi +yj)=§(xy+xy)=§xy

-plane which is a rectangle)

3
_2 dy dz _ _ _ _
J. ZIy dydz = ZJJydydz [ J;ydy 0}

0-3
LHS 0+36TE+0 3671 R.H.S.
Hence Divergence theorem is verified.

Example — 2 : Use Divergence theorem to prove the following :
@ |[curt F.ias =0 @) [[7.ias=3v
S

(iii) §V r? ZS‘ , where S is any closed surface enclosing a volume V.
s

Solution : (i) By Divergence Theorem, we have J Curl F ./ dS
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:g div(curzﬁ)dem(v.vXﬁ)dV

Since V.VxFE =0
j Curl F .7 dS =0

S
(il)) By the Divergence Theorem, we have

Ljf.ﬁds - ji div 7 dV

A A oA 20 A0  ~0 PPN
Let F=xi+yj+zk,divi=V.F={i—+j—+k—|.(xi +yj+zk
FEXit))tz (ﬁx Urs azj( R )
—§£+@+a =1+1+1=3
S x dy oz B

H A dS = Hj3 av =3
(iif) §vr ds = dezv vy =[[[v2 o jav

2 2 2 o* o* o*
Now, v2,2 |2 +6—+6— (2 +y+2) =7 (x2)+a_2(y2)+a_2(zz)
o ot 6zt y z
=2+2+2=6

§vr2a7s = J”6dV:6V.
S Vv

Example — 3: Verify divergence theorem for F — ( X2 - yz) i+ ( y? - zx) j+ (z2 _ xy) k taken over

the rectangular parallelopiped 0 <x <a, 0 <y <b, 0 <7 <c.
Solution : [For verification of divergence theorem we shall evaluate the volume and surface
integrals separately and show that they are equal]

Here Ij::(x2 —yz)iA+(y2 —zx)]ﬁ'+(z2 —xy)l€

Now div ﬁ:a—i(xz—yz)Jr%(yz—zx)+§(zz—xy) =2(x+ytz)

”JdivﬁdV=J”2(x+y+z)dV = j- j)- j-2(x+y+z)dxdydz

z=0y=0x=0

0
) ) b c 2
b
a—y+a y—+ayz dz —ZJ. a—+a—+abz
2 2 o 0 2
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2 2 2)°¢
b b
- 2{“72 +“Tz + ab%} = {a®bc + ab’c + abc®} = abc(a + b+ ) ... (1)
0
To evaluate surface integral, the surface S consists of six surfaces given below.
Equation dS Outward normal (7)
S, —> OAC'B z=0 dx dy X
S, — CB'PA’ z=c dx dy K
S, —> OBA'C x=0 dy dz 2
S, —~> AC'PB’ X=a dy dz i
S, — OCB'A y=0 dx dz -]
S, — BA'PC’ y=b dx dz j
4
A/
C
k
P
B/
B
7 >Y
O a4
J
A c’
X
Fig. 5.14

Hﬁ.ﬁdS:Hﬁ.ﬁdS+”ﬁ.ﬁdS+”ﬁ.ﬁdS+Uﬁ.ﬁdS+Uﬁ.ﬁdS+”F.ﬁdS (2)
S, S Sy Ss Se

s S,

JIFas= [ ) (07 -2+ )i} (A

_ ”(xy—zz)dxdyzjo i:cydxdy _ j‘{%zhdx:%{éa :a24b2 (- 2=0)
”ﬁ.ﬁdS:”{(xz—yz)f+(y2—zx)j'+(zz—xy)l€}.l€dxdy
) a b

T

x=0y=0
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zjj(yz—xz)dydzzj yzdydz = j j-yzdzdy

y=0z=0

2 2.2

f yz ‘ bcy 2yt ’ b c
— ||=| dy = dy = = ey =

”ﬁ.ﬁdS:”{(xz —yz)f+(y2 —zx)j#—(z2 —xy) lg}.iAdy dz

s - ] [ R xma

z=0y=0

Q 2)° < 2 b> ¢ 2 2
= J- azy—1 dz = J azb—E dz = |a’bz——72"| = azbc_b_c
2, 0 2 4 0 4

0

_LJﬁ.ﬁdS :”{(x2 —yz)f+(y2 _zx)j'+(z2 —xy) lg}.(—j‘)dx dz

:”(xz —yz)dx dz = j j(xz dx dz)

2. 271 22

Csza Caz az ac
“[|E| dz=[Lza= = 2y =0
5]l o

0

”ﬁ.ﬁdS :”{(xz —yz)iA+(y2 —zx)j'+(z2 —xy) lg}jdx dz

Se

= J‘J‘(y2 —zx) dxdz = j j‘(bz—zx) dx dz (-y=0b)
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azcz azcz
= b%ac — =ab’c— 2
Substituting the value of S, S, S, S,, S, S in (2)
272 242 22 22 2.2 2.2
S, b
J.FﬂdS:a +abc2—ab bre + a’bc — +ab2c—a4c _a4c

S

=abc® + a*bc + ab’c=abc(a+b+c)= ” divFdv (- ofl)
V

Hence ”F‘ AdS = ”_[div Fdv
S V

Divergence theorem is ver

ified.

Example — 4 : If S is the surface of the sphere x* +y* + 72 = a’

prove that ”(x" +y'+7?
S

Solution : First of all convert the integr

where f is a unit vector normal to the surface ¢ (x, y, z) =x* +)* + 22— a?

. .~ grad.
Le., n=—"—-"-
|grad 4|
§O 50 ;0
grad § = ox J 3y
lgrad ¢ | = 2¢/x7 +y? + 27
Let

xi+yj+zk

= (Af + 12 + 15K).

1
;(ﬁx+}2y+f32)=x4+y4+24
Jix

a a a

_ 3 — 3 — 3
fi=ax’, f,=ay, f,=az
(xjiA-i-ijA'-i-zjk)

F=a
Now, H(x4 +y? +Z4)dS = Hﬁ
s s

=aJJJ3(x2 +y? +22)dV

_xt X SE

)dS:4na6.

al ”(x4 +y* +2*)ds into the form ” F.hdS
N N

0

62) (P +)2+ 22— @)= 2xi +2y) +2zk

2(xf + 3 + k) e
2a

2a, ..

}:l\:
a

F=fi+f]+fk,nowwetake F.a=x*+y*+z*

=x*+yt+ 2

4
z

.ndS = J]JdivI:"dV=JJJV.a(x3f+y3}+z3l€)dV
v v

=3a JJJaZdV =3a’V=3a>. %mﬂ = 4ma®.
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Exercise — 5

1. Evaluate_[ﬁ 7ids where F =z +xj—3)*zk and S is the surface of the cylinder x* +y? =

S
16 included in the first octant between z = 0 and z = 5.
2. If F= (2x2 —3Z)f —2xyj — 4xk show that Iv,ﬁdV over the region bounded by the co-

ordinate planes and the plane 2x + 2y + z=4 is %

3. Verify Stoke’s theorem for the vector field F =(2x—y)i —yz*j — y*zk over the upper half
surface of x? + y*> + 7z = 1 bounded by its projection on the xy-plane.

4. Let S be the region bounded by the ellipse C : 4x> + y>=4 in the plane z= 1 and let 71 = k and

F=x%+2x+ 2%k . Use Stoke’s theorem to find the value of Cj)ﬁ dr.
C
5. Verify Divergence theorem for F = 4xzj — Vi+ yz/; taken over the cube bounded by x = 0,

x=1,y=0,y=1,z=0andz=1.
6.  Evaluate ” A.dS . where 4 = x*f + y* j + 2’k and S is the surface of the sphere x>+y*+z> = a2.
N

O & 3



