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Clearly coordinate of any point on the curve depends upon arc length s.

So x=/(s), y=/(5), z=1(s)
S T=fi(8)i+ fo(s)i+ fi(s)k
r=/(s)

This is the general equation of space curve when length is taken as independent parameter.
3.15 : Scalar and Vector Field

Point Function: A variable quantity whose value at any point in a region of space depends upon
the position of the point, is called a point function.

Point functions are of two types:

(1)  Scalar Point Function

(i) Vector Point Function

A function ¢ (x, y, z) is called a scalar point function if it associates a scalar point function if it
associates a scalar with every point in Region R of a space.

Scalar Point Function : If to each point P (x ,y, z) of a region R in space, there corresponds a
unique scalar ¢ (P), then is ¢ called a scalar point function and we say that a scalar field ¢ has been
defined in R.

e.g. : (i) The temperature at any point within or on the surface of earth at a certain time defines a
scalar field :

(i1) ¢ (x, ¥, z) = x?y* — 37> defines a scalar field.

Vector Point functions. If to eac point P (x, y, z) of a region R in space, there corresponds a
unique vector f (P), then fis called a vector point function and we say that a vector field f has been
defined in R.

e.g. : (i) If the velocity at any point (x, y, z) of a particle moving in a curve is known at a certain
time then a vector field is defined.

(i) ' (x, y, z) = xpy* i + 3pz’j + 2x%zk defines a vector field.

Level surface :

Let a scalar point function f'(x, y, z) be defined in a certain region of space and consider those
points of the field for which ¢ has a fixed value c. The totality of points satisfying the equation ¢ (x, ,
z) = ¢ defines, in general, a surface. Such a surface is called a level surface, since at every point of the
surface ¢ has a constant value c. For different values of ¢, different level surfaces are obtained and no
two level surfaces will intersect.

e.g ¢ (x, y z)=x>+y* + 22 =1’ represents a sphere of radius r, which is a level surface.
Different values of » will give concentric spheres, which are different level surfaces.

Let E(t) = fl(t)I + £ (t)} + f3(t)f< be a vector function. Then for various values of t we get a

set of constant vectors. The sum of constant vectors form, a space or region which is known as vector
field.
The vector differential operation del (V)

Coaxial cylinders are also examples of level surfaces.
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Let = ¢ (x, y, z) be a scalar function. Then for various values of x, y, z we get a set of points or
scalars. The sum of these scalars form a space or region which is known as scalar field.

Vector operation V (read as del.) is defined by the equation
n a o ~
V=i—+ Ji + ki
ox "0y 0Oz
This operation has a great role in vector calculus. Laplacian operator V? is defined as follows:

vz:v.vz(iLlezi)(iLngi

ox "0y 0z ox o0y oz
*  * &
=t —t—
ox* oyt ozt

It is to be noted that the vector function and scalar function are sometimes termed as vector point
function and scalar point and scalar point function since they depend upon the position of point.

Gradient — The vector function V¢ is defined as the gradient of the scalar function ¢ = ¢ (x, y, z),
ie., ¢ (X, Yy, z) by any continuously differentiable scalar function. The gradient of scalar function ¢ is

07,278 (127202

mathematically defined as grad ¢=Vé=—i+—j+—
Y grad ¢=V¢ ox Oy / 0z ox "oy Oz
=V
.0 .0 0 .
Where V = 1——+ J——+2— is called del or enable.
ox “0x 0z
Geometrically, V¢ represents a normal at any point Ad

P to the surface ¢ (X, y, z) = constant and has a
magnitude equal to the rate of change of ¢ (X, y, z)
along this normal. (fig 3.19)

Physical Interpretation.

In this scalar field let there be two level surfaces S

and S, very close together characterised by the scalar
functions ¢ and ¢ + d¢ respectively. Consider two points P P constn
and R on the level surfaces S, and S, respectively. Let t ¢=constna

andT +dr be the position vectors of P and R respectively (Fig 3.19)

relative to any arbitrary origin, then PR =dr .
If co-ordinates of P and R are (x, y, z) and (x + dx, y+dy, z + dz) respectively, then

df = idx + jdy + KdZ -eeeeeeeeeeeen )
As the values of scalar function at P (x, y, z) and R (x + dx, y + dy, z + dz) are ¢ + dd, we may

write. (fig 3.20) b ¢+do
o o 00
dp=—dx+—dy+—d
¢ ox X+6y y+5z § +(3) dr 7\R
A ) R R R . &)
- i@ﬂ@w@ ><(i dx+jdy+kdz) PranQ
ox T dy dz
=(Vd)- dr ... (4) Using (1) and (2) S, s, Fig3.20
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In particular if we consider that the point R (i.e., dr) lies on the
level surface S, then d¢ = 0, so that (V¢) - g7 =0 ....(5)

thereby showing that the vector V¢ is normal to the level surface S .
If dr represents the distance along the normal from point P to the surface S,, then
di =PQ= gy cosO=n-dr ....(6)
Where 11 is a unit vector normal to the surface S, and P. If we proceed from P to Q the value of

scalar function ¢ increases by an amount d¢; therefore, we may write

do = @dn = Z—d)ﬁ -dr (using (6)) .....(7)
n

on
Comparing (4) and (7), we get
o .
grad ¢=V¢=a—in. ..(8)

Thus, gradient of a scalar function ¢ at any point is a vector whose magnitude is equal to the rate
of change of scalar function ¢ along the normal to the level surface and whose direction is normal to the
level surface at that point.

9. . : . .
As gn gives the greatest rate of increase of ¢ with respect to space variables, therefore grad ¢

may be defined as follows :
The gradient of scalar function ¢ is a vector whose magnitude is equal to maximum rate of
change of scalar function ¢ with respect to space variables and whose direction is along that change.
If u and v are scalar differentiable functions, then it may be easily seen that
grad(u+v)=gradu+gradv ... 9)
grad (uv)=ugradv+vgradu. ... (10)
Equation of the tangent plane to the surface ¢ (x, y, z) = ¢ at a point P (x, y,, 7,) can be
derived from the gradient vector at that point.
Since the gradient vector at a point P (x , y,, z,) on the surface ¢ (x, y, z) = ¢ represents normal to
the surface at that point. If we take R (x, ), z) be any point on the tangent plane at (x, ,, z,) then the
vector.

A

(x—x,) i+ (y=n)j+(z—-2z) k will be perpendicular to the normal vector at (X, ¥ 2).

(V) =2+ (= 3)f (2= 2 k] =0

ie. | A x—x1)+ — (y—y1)+ — (z—zl)=0
e [ax (x1.21.21) ay (x1.31521) 0z (x1,171)

Which is the equation of the tangent place at (x, y, z,) to ¢ (x, y, z) = 0.
Equation of normal at P (x,, y , z,) to the surface ¢ (x, y, z) =C

Let R(x, y, z) be any variable point on the normal to the surface ¢ (x, y, z) = 0. Then ﬁ) is
parallel to V.
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. ~ [0~ o6~ -
~ PR xV¢$=0,ie. [( )1+(y yl)J+(Z Z)] [i”aﬁ aik}zo
. . N _Q
! J ke PN
(x=x) (y=-v1) (z-2)=0 N
a9 % o )
ox oy 0z f
(fig 3.21)

=il (y- y1)g—(z Zl)ﬁf} f[(x—xl)%—(z—zl)%}+k{(x—xl)%—(y—yl)g

oz oy
=0i + 03 +0k
Comparing coefficients of i, 3 & k on both sides we get

(y- y1)8¢ (z—zl)@zo .......... (1)

0
and (X_X)a_i_(y_y‘)_zo .......... (3)

Q) |e—
—_
N
|
_N
~
(o))
=

0
Again from (1) (y- Y1) =

N YY1 _277%

% 9%
oy 0z

Similarly from (2) and (3) we get
X=X _z-2 X" X Y-y,

3 a9 CTap o
0x 0z ox oy

Comparing all three, we get the equation of the normal at A (x,, y,, z,)
X=X _Y=Yi_2-7
% o 0
ox oy 0z

Thus the gradient of a scalar field f'is a vector normal to the surface f'= (constant) and having
magnitude equal to the rate of change of f'along this normal.
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3.16 : Properties of Gradient

Theorem — 1 : If ¢ is a constant scalar point function then vy = 0.

Proof : Given ¢ (X, y, z) = ¢ is a constant scalar point funtion

.00 _ 0% _0¢ _
Uox 6y oz

Vf = iAi+j'i == (I ﬁz+l€1=0-f+0-]'+0-l€=(ﬁ)
ox "oy 6x oy oz
Theorem —2: 1f ¢, and ¢, are two scalar point functions then
@ V(,£0)=Vd Ve, (b) V(¢ +c,d)=cVe +c Vo, where ¢ and c, are
constants.

¢1 (I) 'V¢1_¢1'V¢
(© V(90) =0V, 6,V (d) (4,) g ko
Proof : (a) V(¢1i¢2)=(;i+ji+ﬁéj (0, +6,)
0 ~ 0
6_(4)1 +¢2)+J_(¢1 +¢2) 8_(4)1 +¢2)

(5¢1 +5¢2) 3 99, 90, |, (5‘¢1 +5¢zj
ox Ox oy Oy 0z Oz

=(5%+j%+é%ji(;%+;%+,g%j

Ox oy 0z Ox oy 0z
= V¢, + Vo,
(b) V(C1¢1+C2¢2)=({6+ji+k ](Cl¢l+c2¢2)
ox 0
:;%(C1¢1+C2¢2) ;(C1¢1+C2¢2) ai(cl(l)l"'cl(bl)
11&+c21&+c1 i o —* %, +c kad) +c kad)z
X Ox oy Oz
R 20 9] 5
)
0 0
© Viob:)- (18—+Ja—y+k o)

S0:) 1T T (000:) +E (00
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—z(¢1 Ly, i] (¢1 B2 1y, i}k(cb] Lo, i}

_¢(6¢2 '§;+ka¢2)+¢2( i 'aq;+ka¢) 0V, + .V,

ﬁ:aiciAﬁd)_facb o, o
@ V[%J [15x+]5y+k J[‘I’J_lax(%jﬂay(%J az(d’zj

0 ob, 0 0y
R ¢2§¢1 O 54)2 ¢2 ¢ d)l ¢ R 84)1 ¢18(|)2
=i = 2 +] —2 +k —2
3 3 b3

_ 99, 5¢1 001 | |2 00y o 00y » Ob,
= {|: 0, ¢2 k¢2 } |:l¢1 o +Jjb, oy +kd, oz :|}

¢3 ox
¢2[76¢1+]8¢‘+1€8¢‘)—¢1(7 9, +J 7002 +k 5¢z)
_ 9.V, -4,\Vo, _ ox o 2 Ox oy 0z
5 02
V{ﬁj: AL T NP
b, 93
Theorem — 3 : Prove that grad {(r xa)- (f x b)} b x (Fxa) (r X B)

Proof : Grad {(fxﬁ)'(fxl;)} —gradﬂ:b {(¥xa) xr}] gradﬂi { (Fxa) ]

R
= grad [r* (4 - )] - grad] (7 - a)(¥ b))

=2(a-bF - (F-a) b| - (b))

(Since all other terms vanish)
=2(a-b)i - (-d)b— (¥ -b)a

=(a@-b)i—(@-¥)b+(a-bJf - (b-FJa =bx(¥xa)+ax(Fxb)
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Theorem — 4 : Prove that Grad V*f=V?*grad f

Proof : Vgrad f =V* %{.,.ﬁj_,_i;g
& &y &

ZF(% +Z_j; +% j _ZLSx @Q 5 (Z] o (Zﬂ

o f 5f L8 AT 2
_Z[&[SX ¥ azzﬂ Z(S—XVf)l—grade

Directional Derivative

The component of V¢ in the direction of a unit vector a is V¢. a is called the directional derivative
of ¢ in the direction a .

Physically, the directional derivative implies the rate of change of ¢ at (x, y, z) along a (or in the
direction a ). Thus, the directional derivative is maximum in the direction V¢ and the magnitude of this

maximum is equal to |V(I)| .

|~

If ¢(x, y, z) is a scalar function and disa given direction then v ¢. 7 where 7 = is called as

Uy

the directional derivative of ¢ along 7 .
Theorem — 5 : The directional derivative of a scalar field ¢ at a point P (x, y, z) in the direction of a unit
vector a is given by

a9
s =Vd.a
Proof : Let ¢ (x, y, z) define a scalar field in the region R, Let r denote the position vector of any point
P (x, y, z) in this region where r = xi + yj + zk. If s denotes the distance of P from some fixed
point 4 in the direction of a, then As denotes a small element at P in the direction of a. Therefore

dr

d_ is a unit vector at P in this direction.
s

dr

ds
But r=xi+yj+zk.

dr dx +Q. dz

J+
ds ds  ds’  ds
Now, directional derivative of ¢ in the direction a.

d(I) o dx 6(1) dy 64) dz
ds dx ds dy ds dz ds

= i@‘i‘j ¢ a(l) ( z+—yj+%kj
dx dy d ds ds” ds

dr
=Vd.—=Vob.a
¢ds ¢

1.€.

—k
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Remark -1 : If 0 be the angle between the direction V ¢ and a, then

2—¢=V¢.a=V¢|aCOSG=V¢COSG ['.‘\a\zl]
s

d
Hence d_d) is maximum when 6 = 0, i.e., when V¢ and a have the same direction and the
s

d
corresponding maximum value of 99 is | Vo

ds
Thus, the directional derivative s is maximum when it is in the direction of V¢ and the
s
maximum value is |V |..

Remark -2 : If ¢ (x, y, z) = ¢, be a level surface through the point P, then

a_,
ds
Hence Vq),ﬂ =0 .. (1)
ds

dr
Is acts in the direction of PQ where P and Q are neighbouring points on the level surface.

Hence as As — 0, PQ becomes the tangent at P.

r
- T is the unit tangent vector at P.
s

dr
Then from result (1), we see that V¢ acts in a direction perpendicular to the direction of T
s

i.e., along the normal to the level surface at P.

Thus V ¢ at P is in the direction of the normal at P to the level surface ¢ (x, y, z) = ¢ through P.
Gradient in Polar Co-ordinates :

If e_and e, be the unit vectors parallel and perpendicular to the position vector r i.e., in the radial

and transverse sense of any point P, on the path of a particle where r is the position vector of the point
P, then gradient of a scalar function ¢ in polar coordinates is defined by

o 1 0¢
Vo= += Do e
¢ or ror * M
If three dimensional polar (or spherical polar) coordinates are considered, then gradient of a
scalar function f'is given by

R PURT P

€

or " roe rsinﬁa_d)e‘b' - (2)



Vector Differentiation
Example — 1 : If ¢ (x, y, z) = 3x*y —y*7%, find grad ¢ at the point (1,-2,-1)

Solution : grad ¢=V¢=(ia—i+j%+k§J(3xzy—y3zz)

_.0 2 3.2\, ;0 2 32 0 (1.2 3.2
—la(?wc y—yz )+15(3x y—yz )+k§(3x y—yz )
=i(6xy)+j(Bx*—3y%2") + k(- 2y%)

=oxyi+ (3x*-3y2) j—-2zk
Puttingx=1,y=-2,z=—1, we get

grad g at (1, -2, ~1) = —12f =97 ~ 16k

Example -2 :If Vo=@ + y’+2)i+t(x+z+2xp)j+ (@ +2zx)k
find ¢ such that ¢ (1,1,1)

oy, 0, O
Solution : We have V¢'=_¢l+_¢1+_¢k
ox oy~ 0Oz
Given Vo =(y+)?+2)i+x+z+2xp)j+(+2x2) k
0
From (1) and (2) a—i)=y+y2+zz
?=x+z+2xy
Y
o9
—=y+2
aZ y zX

Integrating (3) with respect of x, we get
o=xy+xy*+xz+f(y2)

where the arbitrary constant of integration, f'(y, z), is free from x.

Differentiating (6) partially with respect to y and using (4), we get

@=x+2xy+if(y,z)=x+z+2xy
oy y

%f(w)ﬁ

Now integrating (7) with respect to y, we get
S 2)=yz+g(2)
So(6)is O=xy+x*txz*+tyz+tg(2)
Differentiating (8) partially with respect to z and using (5), we get
o

0
—=2zx+y+—g(z)=y+2zx
. y+5 8=y

(D)
- (2)

(3

(@

. (5

.. (6)

(7

. (8)

3.41
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0
Eg(Z) =0 or g(z)=C.

So from (8), 0=xytx?+xz2+yz+C.
Here ¢ (1,1,1)=4+C.But¢ (1,1, 1)isgiventobe 3. So4+C=3 or C=-1
Hence oO=xytx?+xz2+yz—1.

Illustrative Examples

Example — 1 : Find the directional derivative of ¢=2xy + 7’ at the point (1, -1, 3) in the direction of
the vectori + 2j + 2k .
Solution : Here ¢ (x, y, z) = 2xy + 7

V(I):@; +@3+@f< =2yi +2x] + 2zk
ox 0oy 0z
Voat (1, -1,3)= 21 +2]+6k= 2(—=F + ] +3k)
The unit vector in the direction i + 23 +2k is
RN
Then the directional derivative = V.a

2 14
=Z(-1+2+6)=—
3( +2+0) 3

a=

(Since this is positive, ¢ is increasing in this direction.)

Example — 2 : Find the angle between the tangent planes to the surfaces xIlnz=y> — 1, X’y = 2 -z at
the point (1, 1, 1).

Solution : Let ¢ =xnz=y> —1,¢,=xy+z=2
V¢1 = Inzi —Zy}: +£l€
z
N, =-2j+kat(l,1,1)

Tangent plane to the surface ¢, = constant is
[(x?+ﬁ+zg)—(f+]+g)] -(—2]'+I€) =0
=>-2@F-D+(E-1)=0

Vé, =2xyi +x7] + k

N, =2i+j+kat(l,1,1)

Tangent plane to the surface ¢, = constant
(o7 27 +2K) (7 + 7 +)|-(27 +7 +K) =0
=>2Ex-D+@y-DH+@Ez-1H=0 ... (i1)

Let 6 be the angle between the tangent planes (i) and (ii), then
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0-2+(-2)-1+1-1
cosO = +( ) - I

Jo+da+1Ma+1+41 30
-1
O=cos | —
(@J

Example — 3 : Find a unit vector perpendicular to the surface x* +y’ — 72 = 11 at the point (4, 2, 3).

Solution : The given surface is x*> + y— z> = 11, i.e., the level surface is characterised by ¢ = x* + y*—
z? = constant. We know that the gradient of scalar function ¢ is perpendicular to the level
surface. Therefore, grad ¢ will be perpendicular to ¢ = x> + y* — z = 11 = constant.

grad¢=(f8—i+j%+l€£j(xz +y° —zz)

fe2x+f2y—k-2z=2(xf + yj k)

The coordinates of the point are (x, y, z) = (4, 2, 3).
(grad ¢) at point (4, 2, 3) = 2(47 +2 - 3k)

Required unit vector perpendicular to given surface is

2(4i+2j—3k) 4i+2j-3k  4i+2j-3k

=t = -
p(ai+2j-3k) Jare2re(mp V20
Example — 4 : Find the angle between the surfaces x* +y> + 72 =9 and x* + y?> — z = 3 at the point
2, -1, 2).

Solution : The level surfaces are characterised by
¢, = x>+ y*+ 7’ =9 (constant)
¢, = x>+ y*—z =3 (constant).

We know that the gradient of scalar function is perpendicular to the level surface. Therefore,
grad ¢, and grad ¢, will be perpendicular to given surfaces.

~ 0 ~ 0 ~ 0 2 2 2 2 o N
grad ¢1=[15+18—+k8—J()€ +y 4z )=2X1+2yj+2zk

y A
grad ¢, at point (2, 1,2) = 4i—2]+4k
f\a ’}a A& 2 2 ~ A ~
ad ¢, =|i—+]—+k— |(x"+y  —z)=2x1 +2y] -k
grad ¢, (ax % 62)( ¥ -z) Y

grad ¢, at point (2, -1,2) =4i-2j-k.

The angle between surfaces at any point is same as angle between the normal to the surfaces
at that point. If 0 is the angle between surface, then this will be the angle between grad ¢,

and grad ¢,.
(Vo)-(Vd,) = [V, [V, cos 0
i.e., cosO= M

Ve, [V,
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_(4i-2j+4k)-(41-2j-K) 16+4-4 16 821
‘41_2j+412‘ ‘4?—2}—12\| S V16+4+16416+4+1 36421 63

0 =cos {L}
3421

Example — 5 : If the directional derivative of ¢= axy’ + byz + c¢z’x° at (-1, 1, 2) has a maximum
magnitude of 32 units in the direction parallel to y-axis find a, b, c.

Solution : Maximum directional derivative is along Vv ¢ and in the direction parallel to y-axis the
magnitude is given to be 32 units.

Ve j=32at(-1,1,2)
We have V¢ :@i+@j+@k
ox Oy Oz

ie., Vo= (ay* + 3x%z%)i +Qaxy + bz)j + (by + 2cx’z)k

(VO] 112)= (a +126)i + (-2a +2b)j + (b — 4c)k

Now vV ¢-j=-2a+2b=32byusing (1) or—a+b=16

Also since Vv ¢ is parallel to the y-axis we must have a + 12¢=0 and b — 4¢ =0

Thus by solving the three equations :

—a+b=16,a+12¢=0, b—4c =0 we obtain

a=-12,b=4,c=1

Example — 6 :(a) Find the unit vector normal to the surface x° +y* + 3xyz = 3 at the point (1, 2,-1).

(b) Find a unit of vector normal to the surface of X’y’z> = 4 at the point (1, -1, 2)
Solution : (a) Let o= x>+ y* + 3xyz -3

A vector normal to the surface is

(grad ¢ ) = (3x2 + 3yz) i+ (3y2 + 3xz)}' + 3xyl€

At(1,2,-1)

(grad ¢),, = (3-1° +3:2(=1)) i+ (3:27 +3-1-(-1))j+ (3-1-2)k =-37+9]+6k
=9+81+36 =4/126 =314

3i+9j+6k 1

Wis V14

Also

(grad ¢)(1,2,71)

Hence a unit vector normal to the surface = (—; + 33 + 212)
(b) Proceeding as above as (a).
Example — 7 : Find grad r", where ‘r’ is the distance of any point from origin.

Solution : Here r =./x* +y* +z* , where (x, y, z) is any point in space.

m

O e (xz +y? +Zz)2
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H drm_ar'"1¢+6r’" ¢+6r’"]€
ence gra o oy J oz

m | > A ~ I A ~
:?(x2 +y? +Zz)2 [2){1 +2yJ+22k}l = mr2[ )[Xi +yj+Zk] =m-1m2-r
Example — 8 : Find the directional derivative of the function xy’ +yz’ + 7x? along the tangent to the
curvex=t,y=Fandz=¢at(l, 1, 1) and at (-1, 1, -1).

Solution : Here parametric representation of the curve is

r(f)=ti +22] + 1k

.'.F=f+2t}'+3tzl€=£
dt

. : . P42 +38%
If ais the unit tangent to the curve, then J

a:—
V1+4¢2 +9¢4

At (1, 1, 1) for the given curve t = 1

A A _f+2}+3/€_ L » 8 a7
2 (@) = (@), = NEVIT: _m(z+zj+3k)
At (-1, 1, -1) for the given curve t =—1

o L i=2j43k 1 e s s
(@) =(@), = NEvrCR m(z 2] +3k)
Now ¢ =x)? + yz* + zx?

(grad (I)) = (y2 +2xz)f +(z2 +2xy)j' +(x2 +2yz)l€

- (grad ¢)(1‘1‘1) = 3(1'A+]A'+ k)
and (grad ¢)(,1’ 1,-1) = 3; - } _lg
.. Directional derivative at (1, 1, 1) along the tangent
PN RO SN 3 18
=3i+j+k)——|i+2j+3k|=—=(1+2+3)=—=
(k) g e2ie3k) = re2+3)= 2

Example — 9 : Find the equation of the tangent plane to the surface 2xz° — 3xy — 4x = 7 at the point
(1, -1, 2). Also write the equation of the normal at (1, -1, 2).
Solution : Letd (x, y, z)=2xz>—3xy —4x—7

o ., 29 a9
== —3y-4 —=-3x, —=4xz
o 277 -3y By o
At(1,-1,-2)

0 0
N _gi3-4-7 —9=—,—$=8
ox > Oy 0z

.. Equation of the tangent plane at (1,—1,2)is(x-1) (7) + (v + 1) (-3) +(z—2)8=0
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or 7x—-3y+8z2-26=0

Equation of the normal at (1, — 1, 2) is
x-1 y+1 z-2

o op o

Ox oy Oz

x—1 y+1 z-2
7 -3 8
Example — 10 : If 7 = xi + yj + zk , show that

ie.,

if 7 is the position vector of a variable point (x, y, 7) and |F |=r

1 ¥
(ii) grad (;) =3

r

(i) grad r=

S s

-2

S

(ii) Vr"=nr
Solution : (i) r=|f|=«/x2+y2+zz orr?=x> 1yt +7°

Differentiate partially w.r.t. x, y and z respectively, we get 2r? =2x, 6
X X

F (iv) V(a-F)=d where d is a constant vector.

arx
-

or
Similarly, 5 =

|w

o
T oz

AN

Now, grad r =V r—(z—+1i+k aj( )

oy Oz
-0r ~0r » > ly - =+ = 7
=i—r+]—r k@—i— R k—=—(xi+yj+zk)=£
ox oy Oz r r r r
}7’
Hencegradi”—7

a0r A L 0r o~ . 0r
" "+ k"

7 po=inr
oy oz 0ox oy 0Oz

-1 2 X : rZz Y 2 ~ 2=
=nr" 1[1—+]—+k— =nr" 2(xz +y]+zk)=nr” 7
r
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(iv) V(a-r)
Let G = alf +a2}' +ask, where a,, a,, a, are constants.

a-v =xa, + ya, + za,. Sincer = xi + yj + zk,

- ,AB A,ﬁ ’\8
V(a-r)z(za+18—y+kgj(xal +ya, +za,)

0

=] = (alx+a2y+a3z)+fa—i(a1x+a2y+a3z)+/€£

(a;x+a,y +asz)
Oz
zial +jal2 +1A<a3 :a1§+a23+a3f<:5
Hence V(a-T)=4a
Example — 11 : In what direction from (3, 1,-2) is the directional derivative of ¢=x*y’z* maximum ?
Find also the magnitude of this maximum.

n a o 8 ~ 8 2.2 4
jon : Directi ivati =Vo=|i—+j—+k— |(XyZ
Solution : Directional derivative of ¢ = V9 ( ox J oy 82j< y )
= f(nyzz4) + 3(2X2yz4) +k (4x2yzz3)

Directional derivative at (3, 1, —2) = 96] + 2883 — 288k
Directional derivative is maximum in the direction given by V¢ at (3, 1, 2)
= 961 + 288 — 288k
In any other direction the magnitude of the directional derivative will be less than its

maximum value which is = J(%)2 +(288)° +(288)° =96v/1+9+9 = 96v19 .

DIVERGENCE OF AVECTOR FIELD

3.17 : Introduction

We have developed a tool for determining the rate of change of a scalar field in space and
time in the form of directional derivative and gradient. A natural question arises — How fast a
vector field varies in a given region ? Another question, which may be asked is — can we extend the
analysis of gradient to a vector field ? The answer to the second question is that it is not possible
to extend the analysis of gradient to a vector field.

Rate of change of components in directions other than their own, called the curl. Let us first
study the concept of divergence of a vector field.

DIVERGENCE : Derivatives involving rate of change of a vector component in its own
direction, called the divergence.

We have seen that starting with a scalar point function f, we can construct a vector point
function grad f. But, what happens if we start with a vector point function. If the constructed
function is a scalar point function, then we call it the divergence of a vector point function. More
precisely, we give the following definition :
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Definition : If V (x, , z) be any given continuously differentiable vector point function, then
the funtion

is called the divergence of 3 or divergence of the vector field defined by 3 and is denoted by
div 5.

R 0 0
In terms of operator V, we write dijy v =; - f . i 6f < 4k Bf _(1 8_+J —tk— j f
ox T oy oz x oy O
v.7
The symbol “V.” is pronounced as ““del”.
Let us consider a Cartesians coordinate system Oxyz. Let v have the scalar field components

v,, v,, v, along the directions of x, y, z axes respectively, so that
V=iv, + jv, + kv,
S divi=V.v= {i+j£+1§£ -(iAv1 + v, +l€v3) o o O
ox "oy Oz ox Oy Oz
PHYSICAL INTERPRETATION OF f
DIVERGENCE : Let us consider the case of a fluid flow. C R
Consider a small rectangular parallelopiped of dimension D
dx, dy, dz parallel to X-axis, Y-axis, Z-axis respectively. S
Let {)/ = fo + Vy} + Vzﬁ be the velocity of fluid at v S 2 N =P Vs
> ¥ Q
P (x,y,z) where (V, V,, V,) are components of V parallel B
to X-axis, Y-axis, Z-axis respectively.  (fig 3.22) A POy, )
> X
Mass of the fluid flowing in through the face ABCD 0
per unit time = Velocity x area of the face = V (dy dz) Fig 3.22

y
. Mass of the fluid flowing out across the face PQRS per unit time =V __ . (dy dz).

Vo =V, 0 2

Xx+0x

aV
Vs (dvdz) = ( 6xx dxj(dydz)

Decrease in mass of fluid in the parallelopiped corresponding to the flow along x-axis per unit

oy, ov,
time =V, dy dz - (Vx + 8xx dx ) dy dz = - axx dx dy dz (—ye sign shows decrease)
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ov,

Similarly the decrease in mass of fluid to the flow along y-axis = ny dx dy dz and decrease in

ov,
mass along z-axis = 6_2 dx dy dz .
z

oV
Total decrease in mass of fluid per unit time = v, +—E+ v, dx dy dz
ox o0y Oz
. . an + aVy + aVz
The rate of loss of fluid per unit volume = o oy | oz
= fﬁﬁﬁwéﬁ -(2Vx+}'Vy+/€VZ)=V-V=divV (1)
ox Ty o VTR T N T R AV

Equation (1) is also called the equation of continuity or conservation of mass.

— -
Cor. If div V = 0 everywhere in some region R of space, then V is called Solenoidal Vector
Point Function.

- f R . R
For example let V =—, where F=xi+y+zk andr= |f|=11x2+y2+22

T

3

- ~ ~ ~
then div V=(ii+ji+k—
xr+y° +zz)5

‘ Xi+ v +zk
ox "oy Oz (

_0 % A y .9 z
3
ox (xz +yi+ 22)2 ¥ (xz +y 4+ 22)E o (xz +y 4+ 22)5

(xz +y? +22)5Hix2 +y? 42 —3x2jﬂ ~

3

(x2 +y? +zz)3

B Y4zt - 2xt 4224 xt -2yt +x? 4 yr 277 B
- 5
(xz+y2+zz)2

is solenoidal vector.
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Definition : A vector field {)/ is called divergence free or solenoidal in a given region if for all

points in that region. V. {)/ =0
Thus magnetic field or velocity of a steady flow of compressible fluid are examples of solenoidal

vector fields.
We now apply the concepts discussed in this section to some examples.

N
Laplacian : If ¢ (x, ;, z) is a continuously differentiable scalar function v (x,,z) is a continuously
differentiable vector function we can define the Laplacian for ¢ as well as v for as follows.

0 0 0
Laplacian ¢ =V ¢_63) 6? 6(21)
v N o’ v N v
ox*  oy* oz

The operator that results taking the dot product of the del operator with itself is denoted by V 2
and is called the laplacian operator. The operator has the form
? o &
or ot oz

Note : If ¢ is a scalar function the equation V¢ =0 is called Laplace’s equation and a function
which satisfies Laplace’s equation is called a harmonic function.

. e d
Laplacian vy =V? y =

Vi=VV=

And —-+—=0 is called Laplace’s equation in two dimensions.

Obviously Laplac1an of a scalar function is a scalar quantity and Laplacian of a vector function

is a vector quantity.
Remark : 1. If f(x, y, z) is a scalar function then we have

0. ob . b
dp=Véb=—i+—j+—k
gradp =Vo =" i+ 5 I s

div (grad $)=V-V¢

= ii+ij+ik ] @H@]#@k
ox Oy Oy

28) (2} 28] 225320
~ox\ox oy\ oy ) oy\oy ox? 6y 82

Thus div (grad ¢) = V¢ or V-V = V2
2. The computation of gradient, divergence, curl and laplcian is combination of the concepts
of vector algebra and partial differentiation.



