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Applied Engineering Mathematics — II

Geometrical Applications of Double Integrals

We now consider the use of double integrals for computing areas of plane and curved surfaces,
and volumes.
Plane area

2(x)

b
Let us recall the expression J. f(x,y)dA= II f(x,y)dxdy = J. f(x,y)dvdx .
A R a

n(x)
For f(x,y)=1 this expression becomes.

J.dA:J.J.dxdy }yj( )dy dx = TJ )dx dy )
A a y(x) ¢ x(v)

The integral J.dA represents the total area A of the plane region R over which the repeated
4

integral area taken. Thus (1) may be used to compute the area A. We note that dxdy is the plane

area element dA4 in the Cartesian form.

We find the following formula for area in polar coordinates, bounded by the curves r=£,(0), » =
/(0), and the line 6 = a, 0 = B is given by

B /2(0)

”dxdy f jrdrde

o £,(0)

We observe that r dr d0 is the plane area elements in polar form.

Illustrative Examples

Example — 1 : Find the area bounded between the parabolas y’=4ax and x’=4ay.

Solution : Solving the given equations we find that the two parabolas intersect at the points (0,0) and

(4a, 4a). Therefore, in the region between these parabolas, x varies from 0 to 4a and, for
each x,y varies from a point on the parabola x’>=4ay to a point on the parabola y* = 4ax; that

from y=x*4a to y = 2+/ax . (fig. 4.6)

Hence the required area is

y
4a 2ax 4q 2 1 -
A:j j dydxzjzﬁ——dx X, = 4xy
A 4a | bl y=4ax
x=0y=x /4a 0 :
4a 3 ]4a 4a E
N 5
3 o 4a| 3 0 : > x
0O 4a

_32p 18, 160 Fig. 4.6
3 3 3 (Fig. 4.6)
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Example — 2 : Find the areas enclosed by the cardioid : r = a (1+cos0) between 0= 0 and 0= r.

Solution : Here, 6 varies from 0 to 7 (fig.4.7) and, for each 0, r varies from 0 to a(1+cos0). Therefore,
the required area is

a(l+cos0)

A= j j r dr do
0=0

=0 0=n o\/e—o

- rz a(l+cos0) az .
—_ 2 ’
_ .[o [7}0 dot = 5 Jo (14 cosB)do (Fig. 4.7)

2 2
=2 142050+ (14 cos20)d0 =%
2 do 2 4

Example — 3 : Find the area lying between the parabola y = 4x — x* and the line y = x.

Solution : The two curves intersect at points whose abscissae are given by 4x — x>=x or x> — 3x =0
1e.x=0,3

Using vertical strips, the required area lies between xﬂlf), x=3 and y=x, y=4x—x°.(fig. 4.8)

3 edx—x’ e
.. Required area = J J- dy dx bﬂ*ﬁ' :
0vJx Vi 1
o[ ;
3 J4x—x2 Il 1
= j ﬂ;y])f dx < 1
0 %4‘1’
3 3
= j (4x —x?- x)dx = J <3x —xz)dx
3x? X° T 27
=l T, 7 9=45 Fig. 4.8
{ 2 3 0 2

4.8 : Change of Variables

Sometimes an integral (double or triple) with its present form may not be simple to evaluate. By
choice of an appropriate co-ordinate system the given integral can be transformed into a simple
integral involving the new variables.

z
Change in Triple Integral A
Let (x,y,z2) = (u, v, w) and the relations are as follows :
x=0¢ (u,v,w),y=0¢, (u,v,w), z= 0, (u, v, w)
The Jacobian for this transformation J = M o . Px,y.2)
o(u,v,w) ~- ‘(r, 0, ¢)
':. 75 >y
Then J.J.J.f(xy z)dx dy dz = J.J.J.f((bl(bz(b})J du dv dw
4 v
The region V in (x,y,z) is covered by the limits X (Fig. 4.9)

of u,v and w and is denoted as V'. (fig.4.9)
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(a) Change of variable from Cartesian to spherical polar co-ordinate system.
(x,y,2) = (r,0,0) and the relations are as follows :
x=rsinBcos,y=rsinOsind,z=rcos0
So that x* +y* + 22 = 1?

Ox Ox Ox

or 00 % sinBcos¢ rcosOcosd —rsinBsind

and J = o(x,y,2) _ 0y Oy O =|sin®sind rcosOsing rsin®cosd|_ 2 sin ©

o(r,6,9) [or 06 0b cos© —rsin® 0
& & &
or 08 0

J.J.J.f(x, v, z)dx dy dz :J. J.J.f(rsinecos b, rsin®sind, rcos0)r* sin® dr d d
”

7
The region V in (x,y,z) is to be covered by the limits of 7, 6, ¢ and is denoted as V'.

(b) Change of Variables from Cartesian to Cylindrical Co-ordinate System (fig.4.10)
(x,y,2) = (r,0,z) and the relations are as follows :
x =rcos 0,y =rsinb, z =z (remains, same)

Z
o(x,y,z

w0 pir

ox  Or ox

g; gg gj cos® —rsin® 0 o) y | N >y
JZ? ? ? =(sin® rcos® 0 0 0-9 1907

a_i a_g a_i 0 0 1 . M

= r(cos2 0+ sin’ 9) =r (Fig. 4.10)

J.J.J.f(x,y, z)dx dy dz =J.J.J.f(rc059, rsin®, z)r dr dO dz

The region V in (x,y,z) is to be covered by the limits of r, 0, z and is denoted as V.
Illustrative Examples

1-x2 \I-x"-y?

1
dz dy dx
Example — 1 : Evaluate J J J <9 by changing to spherical Polar
0 0 0 1-x" - yz -7

Co-ordinates.
Solution : The region of integration is bounded by (fig. 4.10)

z=0,z=4/1-x7 -y ,ie. ¥ +)y’+2=1,y=0, y =1 - x?

ie x> +y’=1,x=0,x=1

Which is the volume of the sphere

X2+ 2+ z>= 1 in the positive Octant.

The same region in spherical polar co-ordinates will be as follows :
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r:0-51,0:0->m2, (l)'O—)Tc/Zandx2+y2+zz=r2
1 n/2n/2 n/2 n/2 1 1— 1_

2 sin®
I = d dody = smedrdedd)
e[ 7temn T S e
/2 n/2 1 1 J—
= —1—r* |dr sin® do do
gl :
/2 n/2 2 !
= [ [ |sinr- = Lt || sin® do do A
: 2 2 . X
w2 w2 { % y B
= J. J. [g 5 §:|sm9 do do = J. sin® do d¢ (Fig. 4.10)
7:“/;) n T w
_n _ n/2 _" _rr_r
_44( cos 0)™ do 4£d¢ T3 g

4.9 : Volumes of Solids

Volume as the triple integral : Divide the given solid by planes parallel to the co-ordinate
planes into rectangular parallelopipeds of volume dx Oy 0z (fig. 4.11)

Z

A
C

X Oy oz
P(x,y,
(%, 2) .y
0] B
(Fig. 4.11)

A
X

.. the total volume Jjjdx dy dz with appropriate limits of integration.
dv = 8x Oy 0z, Note. (i) Mass = volume X density

=”jpdx dy dz

where p is density.

Illustrative Examples

2 2 2
X Z
Example — 1 : Find the volume of the ellipsoid — + —Z +—=1,

Solution : Let OABC be the positive octant of the given e111ps01d which is bounded by the planes



4.24 Applied Engineering Mathematics — II

2 2 2
OAB(z=0), OBC (x=0), OCA(y=0) and the surface ABC i.e. 5 + Z—z + =1
a C

Divide this region R into rectangular parallelopiped of volume 0x dy 0z. Consider such an
element at P(x,y,z).

.~. the required volume = SJJde dy dz
R

In this region R,
(1) z varies from 0 to MN where

MN =c¢ (1—)62/512 —yz/bz)

(i) y varies from 0 to EF, where

EF=b (1 - xz/az) from the equation of the

ellipse OAB, i.e. x*/a*H*/b*=1
(iii) x varies from 0 to OA = a.
Hence the volume of the whole ellipsoid. (fig.4.12) (Fig. 4.12)

_ Sjoajob\/(lxz/az) J-c\/(lxz/azyz/bz) e dy iz

0

sf [ g

= 8J:dx_[0b (1=e’) \/(1 —x%/a* —y? /bz)dy

= %J:dx‘[:,/(pz - yz)dy when p = b,l(l —x* /az)

p

2 2
ey W) o | ey xt)n,
b Jo 2 2 P bJdo2 a’ )2
L 0

2 374
=2mbe| | 1 —x—zjdx = 2nbc{x - ;—2} _ dmabe
0 a
0

a 3
Example — 2 : Find the volume of the solid enclosed by the surface x*+y*=cz, x’+y*=2ax, 7=0
Solution : Volume = Jjjdx dy dz integration to be carried over the given region above the XY plane

enclosed by the circular cylinder and the paraboloid of revolution.

2 +y2 ; for y, the limits are —\/(2ax—x2) to\/(2ax—x2) and

Limits for z vary from 0 to

for x are 0 to 2a.

V=Jo2 a J; Dj?z dZ]dy dx




Vector Integration 4.25

3 V2ax—x?
_ J~2a \/m x _|_y dx d _ 2J-Za X y y dx
—ax—x? c c 3c

i [3a N2ax - x* + (Zax - xz)}/2 }dx

3¢ Jo

= 3—J0 0[3)65/2 (2a-x)" +x**(2a- x)m]]dx
a

2 k3
= _Jz [3(201)3 sin® t(l — sin* t)l/z +(2a)’ sin® t(l — sin* t)m }4(1 sintcost dt
3cJo
where x=2a sin*t.

64a
3¢

j (3sm tcos® t+sin* t cos t)dt
0

_ 64a* 3531 m 3131w _ 3na’
3c 86422 86422] 2

Example — 3 : Find the volume of the solid enclosed between the two surface 7 =x*+ 3y’ and
7=8-x 7

Solution : Volume = Jjjdx dy dz integration is to be carried over the region where z varies from

(x*+33?) to (8—x*—?). Eliminating z from the two equations, the orthogonal projection
of the volume on the XY plane is the ellipse x*+2y?=4, which determines the limits for x

and y.
V= Je? 8ﬂf*yzar dx d
J J Jir Jei BEY

J- Jj;Tyy - x? —yz)—(x2+3y2)]dxdy
J J j% 8 2x% - 4y2)dx dy
¥
V2 2x3 2
:.[ﬁ |:(8—4yz)x—7}0 dy

V2 4 32
=4J‘0 3<4 2Y) dy, put y =2 sint, dy =~/2 cost dt

/2
_ 125?/5J0 cos® £ df = 128«/5(3.1.n)=8m5

3 422
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4.10 : Computation of Volume by Triple Integrals

Recall expression = Ijjdx dy dz- In the particular case where f(x,y,7) = 1, this expression
v

becomes.

b y(x)z

Jav=[[[axaya-=] | Ty)dzdy dx (1)
4 R

a n(x)z(xy)

The integral J av represents the volume V of the region R.
Vv

Thus, expression (1) may be used to compute V.
If (x,y,z) are changed to (u, v, w), we obtain in the following expression for the volume.

jdV:j”dx dy dz=”deudvdw (2)

Taking (u, v, w) = (R, ¢, z) in the above expression, we obtain the following expression for
volume in terms of cylindrical polar co-ordinates.

jdV:j”R dR db dz -3
v R
Similarly, we obtain the following expression for volume in terms of spherical polar co-ordinates.

jdV:”jrz sin dr do do (4
V R

Observe that R dR d¢ dz is the volume element in cylinderical polar co-ordinates, and > sin 0 dr
dO d¢ is the volume elements in spherical polar co-ordinates.

Illustrative Examples

Example — 1 : Find the volume bounded by the surface z=a’-x* and the planes x =0,y =0, z =0 and
y=b
Solution : Here, z varies from z=0 to z=a’—x>. For z= 0, x varies from 0 to a, and y varies from 0 to b.
Therefore the required volumes is

V:J‘J.}[dV: j j azjx;zdydx

x=0y=0 z=0

ab a 3

- J.J.(a2 - xz)dy dx = J.b(a2 - xz)dx = b(a3 _%J = %bcf

00 0

Example — 2 : Find the volume common to the sphere x’+y’*+z’=a’ and the cylinder x*+y’=ax.

Solution : Here, it is convenient to employ cylindrical polar co-ordinates (R, ¢, z). In terms of these
co-ordinates, the equations of the given sphere and the given cylinder read R*+ z2= ¢* and
R= a cos¢ respectively.
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From (fig.4.13) we observe that in the given region, z varies from _/42 _ g2 t044/42 — R2 ,
R varies from 0 to a cos ¢, and ¢ varies from O to ©. Therefore, the required volume is

n acosd a?-R® 4
v=[ | | Radrdp o
=0 R=0 -—_\[s>_g>
n acosd 1
2| [ ma-Fardy i
$=0 R=0 O_’;v/ >y
n 1 3 acosd 1
-2 | {[—E(az—Rz) L }dd) Q i
$=0
~ 2(13 b 1 5 d ~ 2a3 T 3 d :
_TJ( — sin’ oo ==~ n—!sm o do (Fig. 4.13)
2 n/2 n/2
o]
0 0
2a /2 2 3 2 2
2 [sin® g dpy — 24 { - .—}:i
3 {n ‘([sm } 3 n—2 3 (3m—4)

Example — 3 : Evaluate J

\/ﬁ dz dy dx
,[ J\/x %) \/(x2+y2+z2)

Solution : We change to spherical polar co-ordinates (7,0,¢), so that
x=r sin® cos ¢, y=r sin 0 sind, z =r cos 0
and J=r2 5in0, x>+ )* + 22 =1,
The region of integration is common to the cone z>=x*+)” and the cylinder x>+)*=1 bounded
by the plane z=1 in the positive octant (Fig.4.14)
Hence 6 varies from 0 to ©/4, r varies from 0 to sec6 and ¢ Varles from 0 to 7/2.
*. Given integral becomes £

jmr“jmel 7 sin0 dr do di T

il 2 e \
J. J. { } sin 040 |

\ (3189
\
b n/4 \
=§J0/4sec esin@d@ =§J‘O secOtan 0 do —‘—\\ _
e o) N
C- -G >y
=X [sec]™ = (21 (Fig. 4.14
4 4 X ig-4.19)
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Example — 4 : Find by double integration, the volume common to the cylinders x* + y* = 2ax and
2?=2ax. z
Solution : Here the cylinder are given by
xX*+y*=2ax .. @) )
z2=2ax .(i1) z=2ax
=z=+2ax = e (iii)
.. Each of the surface is symmetrical about

the xy- plane (fig. 4.15) ,Q;’— A~ >y
4

. ! \
V= Zij(x, yydxdy .. (iv) \
R Xty =2ax
X

where (iii) 7 = \/2ax (Fig. 4.15)
and R is the region bounded by the circle given in (i) on the xy-plane.

i.e. 0<x<2aand —y2qx — x° SyS\/2ax—x2

2am 2g
VZZI I ~2ax dx dy :2J'V2ax[y]%dx
[Ny 0

2a
e / 2
=4/2a J.\/; 2ax —x"dxX et x=2q sin® 0, dx = 4a sin® cos O
0

/2

= 4(@)2 8a’ J.sin3 0cos>0d0 = 644> 21 ﬁf ‘

0 531 15

Example — 5 : Find the volume bounded by the cylinder x’+y’=4 and the planes y+z=4 and 7=0
Solution : The problem can be solved in cylinderical co-ordinate system.

Here, z=4—-y=4—rcos0.

r:0-52,0:0->2n

z:0—> (4—rcosH) (fig. 4.16)

2m2 4—rcos®
Required Volume = J.J. J. rdz dr do

00 0 z
2n2

r.[z]gfrmedr do = J.J.r(4 —rcos0)dr do
00

> N

Y41
YN,

I
oc—y
S

3.

I Ll
27
(4r—r2 cose)dr do = J. 8—§cose do ;
= 3 (Fig. 4.16)

0 X

I
o7
S

8 2n
|:86—§sin6} =167

0
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Example — 6 : Find the volume bounded by the paraboloid 7=2x’ + y* and the parabolic cylinder 7 =

4-y>.
Solution :

Consider the volume in the positive Octant. The projection of the intersection region is

obtained by equating the equations of paraboloid and the parabolic cylinder which is a

circle x**=2,z=0. (fig. 4.17)

V2 \/ﬁ 4-y2
*. Required volume = 4J J dz dy dx z
0 0 2dy (0,0, 4)
i L(0.2.2)
:4J- J- [z ];waz dy dx :
0 0 N2,0,4
V2 2-x2
:4J‘ J- (4 2x —2y2)dydx >y
0 0 X +y =2,z=0
J2 3 2—x
:41{(4‘2)‘2) y %} d * (Fig. 4.17)
0 0
i 2 3/2 16ﬁ 3/2
=4J 22— W2-x* ~Z(2-x%) =—J
3 3
0 0
l6ﬁ
? 23/2.005‘3 0 21/2 cos0 do (Let X :\/Esine, dx :\/ECOSOde)
0
/2
64 31w
- 4 — - -
= J.os 0 do 3222 4

4.11: Transformation of Double Integrals Into Line Integrals — Green’s Theorem

Introduction : We may transform double integrals over a plane region, under suitable conditions,
into line integrals over the boundary of a region and conversely. This transformation is of practical
interest because it makes the evaluation of an integral easier. It also helps in the theory whenever we
want to switch from one type of integral to other.

This transformation can be done by means of a theorem known as Green’s Theorem which is
due to English mathematician, George Green (1793-1841). We shall now state this theorem.

Green’s Theorem in the plane : (Tangential form)
If'S is a plane surface in the xy-plane bounded by a simple closed curve consists of finitely many
smooth curves. Let M and N are continuous functions of x and y having continuous partial

oM oN
derivatives E and —— in the regions R.

Ox

Then §(de+Ndy) ”(a_zv_aa_z\;j dx dy :§§F.ﬁds
C
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the line integral being taken along the entire boundary C of R such that R is on the left as one
advances in the directions of integration.

Proof : Consider the region S bounded by a single closed curve C which is cut by any line parallel to
the axis at the most in two points.
Let the equation of the curve C, i.e.AEB be y = ¢,(x) and the equation of the curve C, i.e. BFA be
y=¢, (x) i.e. Cis divided in to two curves C, & C,

If the region S is bounded by C, we have (fig 4.18)

b0
”66_]:[ dx a’y=j1 J. %—fdy dx = T[M(x, y)szjdx
N a ¢;x) a

b b
j M(x,0,(x)) dx - j M(x,0,(x)) dx

a b O x=a x=b
—j M(x, ¢, (x)) dx - j M(x, ¢, (x)) dx Fig 4.18
b a

—IM(x y)dx—J.M(x Pydx = — jM(x y)dx+JM(x Pyd|=— §M(x ) dx
C

C, C C, c
M .
:>§§M(x,y) dx = _”6— dcdy (i)
c s
Similarly, the equation of the curve EAF be x = w,(y) and the equation of the curve EBF be x =
wy). Then
fova0)
ON ' ON
s )

A e
[N, () =Ny, (), 3] dy= [N )09y + [Ny, (). )y — NGy dy
€ f C

[

i.e.,§N (x,y)dy = ”aa_zz dedy ... (ii)
C S

Adding (i) and (ii) we get

Note : 1. The above theorem is also true for the curves C for which the line parallel to the
coordinate axes cut C in more than two points.
2. The above theorem is also true for the multiply connected region S. Proofs are not

considered in this text.
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Green’s Theorem (Normal Form)
If ‘S’ is a plane surface in xy plane bounded by a simple closed curve ‘C’°, M and N are continuous
function of x and y having continuous derivative in the regions then.

i(Mdy Ndx) J.J.[a—M+aa—])\j]dxdy=iﬁ'ﬁds

Divergence Integral

The outward flux of a field F = M + Nj across a simple closed curve C equals the double

integral of div Z" over the region R enclosed by C.

Illustrative Examples

Example — 1 : Find by Green’s theorem E’;(xz ydx + ydy) along the closed curve C formed by y* =

andy =x between (0, 0) and (1, 1).
Solution : We can use either form of Green’s Theorem to change the line integral into a double integral.
(1) (With Tangential form)
Taking M = x*y and N=y.
By Green’s Theorem, we have

i;(de+Ndy ”[a—f—%—ﬂd dy

(v + i) = Lj[a_i@) _%(xzy)} e dy

C

Where S is the region bounded by the arc of parabola y* = x and the line y = x between their point
of intersection (0, 0) and (1, 1).

E’;(x ydx+ydy =

© t— —

y
j *)dxdy
y

—
W=,
[
< <,
&

Il
|
|
—
<
|
<
SN—
&

(Normal form)

oM ON
?(Mdy - Ndx) = :[:[(g + g} dxdy

Here M =y, N =—x%.
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By Green’s Theorem, we have

i;ydw(—xzy)dx:.g[a_i( 66y< * y)j

-1y? Ir 7’ L v T
1 [ R e
0 0 0

Here both Tangential and normal forms are same.

Example — 2 : Evaluate ﬂ(xz - 2xy)dx + (xzy + 3)dy}l around the boundary C of the region
c
y=8x,x=2
Solution : The boundary C of the region y> = 8x, x = 2 is the curve OABO and area S enclosed is shown
as shaded (fig4.19)
Using Green’s theorem A

ﬂ:(x2 - 2xy)dx + (xzy + 3)dle

C

_ Lj[ﬁ_i(xzyu)_@_@y(xz 2y ooy

O

X
2 +242x
- LO [J-y_zm(b(y +2x)dy dx} |
TB=(2-4)
2 Wax
:J- [xy +2XJ/]] o Fig 4.19

S I R e e

2 2
= j 4x2+2x dx = Sﬁjx%dx
x=0 0

502 2

_8\/—{5/2} _16\/_ 4z o128

Example — 3 : Verify Green’s theorem in the plane for ﬂ(j’xz —8y? )dx + (4y — 6xy)dy}l where C is
C
the boundary of the region definedbyx =0,y =0,x+y=1.
Solution : Here M =3x>—8y?>, N=4y — 6xy
oM ON

=-16y, =-6
6y ox d
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RHLS. = ISJ [% - 2—1‘5} dx dy = ilf(—@v +16y) ddy

11-x 1

2l—x 1 31
_ BN I PPN T
—IOl‘l‘ydydx—lOﬂ:?L dx—S‘([(l x) dx—S{ 3 } =3

0

Now C consists of the paths O4, OB and BO.
On0A4,y=0,x:0—>1,dy=0

1 37!
2 X
1= [3x dx:3{?} -1
0 0

OndB x+y=1,=2x=1-y,dc=—dyandy:0—>1 (fig4.20)

1 1
L= [ 8- =8y (-dv) + 14y —6(1- p)y} dy = [(A1y + 4y =-3)dy
0 0

3 2 ! y
B PR ) A
3 2 o 3
on BO,x=0,dx=0,y:150 B(0, 1)
0 5,70
13:J4ydy 4.{21 2 Xty
1
8 5 x=0Y
L.H.S=Il+12+13=1+§f2=§ § A(I,O)\X
LHS.=RHS. 0 0
Hence Green’s theorem in plane is verified. Fig 4.20

Example — 4 : Verify Greens theorem for f#;( Xy + y2 )dx + xzdy, where C is the boundary of the
c
closed region bounded by y = x and y = x’.

Y
Solution : Evaluation by Green’s theorem, ; i _
y=x y=x
E’;(xy + yz)dx +x°dy with f§ Mdx + Ndy
c C C2 (] ’ 1 )
Here M =xy + 37, N=x’ C
oM ON : > X
oy =x+2y,§=2x (fig4.21) 0
By Green’s theorem

ON oM
§ Mds + Ndy = ISI [5‘5] dx dy Fig 4.21
C
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Eﬁ(xy + yz)dx +x%dy
c

1 X

:J. I(2x xX— 2y)dydx—J. J.x 2ydydx

x=0 y=x’ x=0 y=x>

1

jﬂixy - yzjﬂ; dx = j(—x3 +x*)dx
0

0
4 57!
2] o 1
45|74 5 0 (1)

(Evaluation by line integral)

§(xy+ ¥ )dx +xdy — §(xy +37)dx+xdy §(xy + 37 )dx +x*dy
C G G
AlongC ;y =x* .. dy=2xdrxand 0<x<1
AlongC ;y=x ..dy=dx;1<x<0
1 0
J‘ x4 x? dx+x 2xdx+J(x2+x2)dx+x2dx
0 1
. p 4 57!
- J.(3x3 +x4) dx +J-3x2dx = {ﬂ_kx_} +Hix3jﬂ°
0 4 51 !
s +l— l—l = which is same as (1)
4 5 5 4 20
Hence Green’s theorem is verified.

Example — 5 : Verify Green’s theorem for ft;e*x (sin y dx + cos y dy) where C is the boundary of a
c

T T
rectangle whose vertices are (0, 0), (7, 0), (Waz) and (0’3).

T

Solution : Boundary of the region i.e., that of a rectangle is givenby y=0,x =7,y = X = 0.

By Green’s theorem,

§de+zvdy ”[a—f_aa—de dy

Compare EEM dx+ N dy with
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§e”‘ siny dx+e * cosydy, we have
c
oM ON

M =e>siny; N=e>cosy, 6_ =e*Ccosy; o =—e*cosy
X

3 n
e *(siny dx+cos y dy) = J J Tcosy—e” cosy)dxdy (fig4.22)

A~

AY
g T E n [072[) -
= 2J. J. cosydxdy—f2J.COSydyJ. Tdx C < B(Tf,zj
y=0x=0 0 \ /b
3 ) 3
= _2_[ (COSJ’ dy[—e’“]o) =72J-(efn+1)cosydy 0 > A > X
;:O 0 ©.0 Fig. 422 ™0
- 2,?(@” - 1) cos ydy = 2(e”‘ - 1) [sin y]]og = 2(e”‘ - 1) ()
0

[Now find §M dx+Ndy = J‘e”‘(sin y dx + cos y dy) by line integral]
c OABC

Ie”“(sin y dx +cos y dy)
OABC

= Je”“ (sin y dx + cos y dy) + J‘ef’“(sin y dx +cos y dy)

OA AB

N Je”‘(sin y dx+cosydy)+ Je”‘(sin y dx +cos y dy) @
BC co
Along OA ; y=0 .. dy=0 and x varies from 0 to 7t
J.e*x(sinydx+cosydy):J.e*"(0+0):O ... 3)
OA 0

T
Along AB ; x = 7, dx = 0 and y varies from 0 to ER

T
e"cosydy=e"[siny]2=e" .. (4

S o |a

J-e’)‘(sin y dx+cos ydy)=

AB
T
Along BC ; y=5 - dy =0 and x varies from 7 to 0
0
0
J. *(sin y dx+cos y dy) = Je (1.dx) = "]l =e " -1 . (5)
BC 4
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s
Along CO ; x=0 ~. dx=0and y varies from 5 to 0

0+ dy =[sin y]x =1
(0+cos y)dy =[sin y]= )

2

J.ef"(sin y dx+cos ydy)=
co

Substituting (3), (4), (5) and (6) in (2), we get
§e”“(sin ydx+cosydy) =0+e " +e " —1-1= 2(5“ —1)

C
which is same as (1)
Green’s theorem is verified

Example — 6 :Verify Green’s theorem for §(x2 —cosh y)dx +(y + sin x) dy where C is the boundary

c
of a rectangle whose vertices as O (0, 0), A (m, 0), B(m, 1), C(0, 1).
Solution : Here boundary of the region is that of a rectangle given by y=0,x =7,y
Substituting (3), (4), (5) and (6) in (2), we get
By Green’s theorem

0 —

=1,x=0

§M dx+ N dy = ”{a—N—a—Mj dxdy (fig4.23)

Compare f#;M dx+ N dy to ig(xz —cosh y) dx +(y + sin x) dy
c c
M=x>—coshy; N=y +sinx
M oN ¥
oy =-—sinhy; ox =CoS X CO.1) y=1

§(x2 —cosh y) dx +(y +sinx) dy-- B (m, 1)

ON oM
= J;J (a —a—dex dy 5 ;

(Cos X+ sinh y) dx dy Fig 4.23
0

0  A(x,0)

ﬁ'—.?-l

y

1

J[ smx+xsmhy “dy _ J(0+nsmhy)dy
0

=[n coshy]0=0—n=—n ..... (1) [--coshl=0]

Now, find E’;(xz —cosh y)dx + (y + sin x) dy by line integral

ii;(xz —cosh y)dx+(y + sin x) dy

E’;(xz —cosh y)dx +(y+sinx)dy =
OABC

C



Vector Integration

= ft;(xz —cosh y)dx +(y + sin x) dy + 3§(x2 —cosh y)dx +(y + sin x) dy

OA

AB

4.37

+ §(x2 —coshy)dx+(y+sin x) dy + ft;(xz coshy)dx+(y+sin x) dy....(2)
BC co
Along OA; y=0 dyv=0and0<x<n
2 . T 2 x’ i m’
Ef(x —coshy)dx+(y+smx)dy=J(x —l)dxz x| =-m (3
04 0 3 0o 3
Along AB; X=T7 dx=0;0<y<1
1 2 1 1
Ef(xz—cosh y)dx+(y+sinx)dy='|‘ydy={y?} =5 (4
AB 0 0
Along BC; y=1 dy=0;n<x<0
0 R o
>—cosh y)dx+(y+sinx)dy = |x’dx=| —| =-——
i(x cos y)x (v +sinx)dy ;[x x B 3 (5
Along CO; x=0 dx=0;1<y<0
0 2 1 1
§(x2—cosh y)dx+(y+sinx)dy=Jydy= y?} =3 e (6)
co 1 L < Jo
Substituting (3), (4), (5) and (6) in (2), we get
3 3
i(xz—coshy)dx+(y+sinx)dyz%—n+%—%—%=—n
Which is same as (1).

Green’s theorem is verified.

Exercise — 4

Show that F = yzi + zx] + xyl€ is conservative.
2. If F= (2x+ 6y2)f —10zj — x*zk » evaluate jﬁ.d? from (0, 0, 0) to (1, 1, 1) along the path x =
C

ty=t,z="t.

Compute @ﬁ d7, where F=2 _sz and C is the circle x>+ y*> = 1 transversed counter
C

X +Yy

clockwise.
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5
4. Show that sz yids = T4 around the circle x> + v} =d2
4
C
5. Find the volume of the region enclosed by the surfaces z = x?+ 3y?, z =8 —x?— y2

A triangular prism is formed by the planes whose equations are ay = bx, y = 0 and x = a. Find the
volume of this prism between the plane z = 0 and the surface z = ¢ + xy.

7. Verify both forms of Green’s Theorem for the field F(x, y) = (x — y) i + xj and the region bounded

by the unit circle r(?) = (cos t)f + (sin t)j 0<t<2n

1
8. Apply Green’s theorem to prove that the area enclosed by a plane curve is EJ.X dy—ydx .

Hence find the area of the ellipse whose semi major and minor axes are of lengths a and b.

O & O3



