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=} CHAPTER - 6 =

Fourier Series

6.0 : Introduction

In the early eighteenth century D ‘Alembert and Euler had given solutions in closed form
for the problem of a vibrating string, using two ordinary functions. Where as Daniel Burnoulli
(1700-1782) had found a solution in terms of an infinite series of trigonometric functions. These
series, named after the French physicist Joseph Fourier (1768-1830), represent a very powerful
tool in connection with solutions of various problems involving ordinary and partial differential
equations. Fourier under took systemetic study of the subject in his memorable monograph
“Theories analytic dela chaleur”, in 1882 while dealing with the problems of heat conduction
along a bar.

These series has a deep influence in the further development of mathematics and mathematical
physics. Several phenomenon that are studied in engineering are periodic in nature. They are
repeated after an interval of time. For example, the current and voltage in an alternating circuit,
conduction of heat in solids, the displacement velocity and acceleration of a piston, electrodynamics
and wave propagation in different types of media and many parameters in a vibrating system are
all periodic.

In many engineering problems especially in the study of periodic phenomenon in conduction
of heat, electro-dynamics and acoustics, it is necessary to express a function in a series of sines
and cosines. In this chapter we discuss the basic concepts relating Fourier series and obtain Fourier
series development of several functions.

6.1 Periodic Functions

Definition : A function /' R — R is said to be periodic if there exists a positive number T
such that f{x + T) = f{(x) for all real numbers x and T is called a period of /. If a periodic function has
a smallest positive period T, then T is called the primitive period of f.

Example :

1. The trigonometric functions sin x and cosx are periodic functions with primitive period

2m.

2. sin 2x and cos 2x are periodic functions with primitive period 7.

3. The constant function f{x) = c is a periodic function. In fact every positive real number

is a period of f'and hence this periodic function has no primitive period.

4. Letf: R — R be the function defined by



Fourier Series 6.3

(x)= {0 if x is rational

1 if xisirrational”

Let T be any rational number. If x is rational, then x + T is also rational and if x is irrational,
then x + T is also irrational. Hence

B

Hence every rational number is a period of f and f has no primitive period.

Remark. Let f be a periodic function with period T. If the values f{x) are known in an

interval of length T, then by periodicity, f{x) can be determined for all x. Hence the graph of

a periodic function is obtained by periodic repetition of its graph in any interval of length T.
Example — 1. The graph of the periodic function sin x is given in (fig.6.1)
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(Fig.6.1)
2. Let f'be the periodic function defined by

0 if xisrational

1 if xisirrational =fx)

-1 if —n<x<0

f(x):{l if0<x<m

and f{x + 21) = f(x).
The graph of fis given in (fig.6.2)
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(Fig.6.2)
3. Let f'be the periodic function defined by
fX)=xif-n<x<mn
and flx + 21) = fix)
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The graph of fis given in (fig.6.3)
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Theorem — 1. Let f and g be periodic functions with period T and let a and b be real numbers.
Prove that af + bg is also a periodic functions with period T.
Proof:  Since fand g are periodic with period T.
S+ =f(x)......... (1)
andg (x + T)=g(x) for all x. ....... 2)
Now (af +bg) (x+ T)=af(x + T)+ bg (x + T)
=af (x) + bg (x) (by (1) and (2))
= (af + bg) (x)
Hence af + bg is periodic with period T.
Theorem — 2. If T is a period of f, prove that nT where n is any positive integer, is also a
period of f.
Proof: [f(x)=f(x+T)=f(x+2T)=...=filx+ @m-1)T)=f(x+nT)
it follows that nT is a period of f.

Theorem — 3. Let n be any positive integer. Prove that sin nx is a periodic function with
period 27t/n.

Proof:  Since sinx a periodic function with period 27, we have
sin (x + 2m) = sin x for all x. ......... €
Now let g(x) = sin nx.

2n ) 2n
Then g(x + —) = szn(n(x + —D
n n

= sin (nx + 271) = sin nx = g(x) by (1).
Hence g(x) = sin nx is a periodic function with period 27/n.

Theorem — 4. Let f(x) be a periodic function with period T. Prove that for any positive real
number a, f{ax) is a periodic function with period T/a.

Proof:  Wehavef(x+T)=f(x)for all x.
Let g(x) = 1 (ax)
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Now g(x " g) = f(a(x . gD

=f(ax+T)=f(ax) = g (x).
Hence g(x) is a periodic function with period T/a.
Theorem — 5. For a periodic function of period 2w, prove that

p+2m a+2m
(0 jf(x)dx [rooe j £(x) dx= j £(x)dx

(iii) ff (x) dx =ff (v +x)dx

a, B, v being any numbers.
Proof : (i) For a periodic function of period 27, we know that

Sf(t=2m)=f(t)

Hence putting t — 2n =x, t = x + 2= for all o & B, we get

B+2m B+2m B+2m

j F(x)dx = j f(t-2m)dt — j f(t)dt= j f(x)dx

a+2m a+2n a+27

wi2n at2n

(i) f F(x)dx = j Fx)dx + j Fx)dx + j F(x)dx = j F0)dx + j F(x)dx + j f(x)dx  (byi)

= ff(x)dx+ 'Tf(x)dx—ff(x)dx = ]Ef(x)dx

(i) Lety+x=t
whenx =—-m t=y—-7
X=mt=y+mw

Y47 yY+m

jfy+xdx J.f dt_Jf dt+J.f dt+J.f

j f(t)dt + jf(r)dr— jf(r)dr - j F(tydi= j F(x)dx

Y+ Y+7

These results, in fact mean that the integral of a periodic function over any interval whose
length is equal to it’s period.
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Illustrative Examples

Example -1 : Determine the period of each of the following function
(i) sin’x (i) |cos x| (iii)) x— [x]

Sol":
l—cos2x 1 1
(1) We have sinzx =$:5—ECOS2X’=J{(X)
T
Since cos 2x is a periodic function with period 5" T,
So flx) is periodic with period 7.
.. .. 2
(i) Wehave f(x)=|cosx|=1/cos®x ( <= \/x_)
B /1 + cos2x
2
. o : 2n
So f{x) = |cos x| is periodic with period = 5 T,
(iii) let fix) = x —[x] be a periodic fucntion with period T.
them f(x + T) =f(x) forallx € R
=>x+T-[x+T]=x—[x]forallx e R
=[x+ T]—[x] =T for allx eR
=>T=1,2,3,4........
Since T is the smallest positive real number such that f{f+ T) = f{x) for all x € R. therefore
T=1.
Example -2: Give an example of a sinusoidal periodic function whose period is
c T
U] ik (ii) P
2n
Sol": Since sin x is a peridic function with period 27. So sin ax is periodic with period P
2
(i) Here n__c —a= 2z +k)

a z+k c
) o ] 27t(Z + k)
So the required function is sin e X
2w
i —=—=a=2k
(i) Here P

Hence the required function is sin 2 kx.
Example - 3 : Find, Fundamental Period of the followings
Sin 2x, Coszx,Cos’mx

2n
Sol": Period of the function f{x) = sin 2x is 5" L

2n
Period of the function f{x) = cos mx is - 2

2n
Period of the function f{x) = cos 2mx is P 1
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Example - 4 : Find the smallest positive period T of the followings
2nx 2nnx
i i Cos|
Sin nx, Stn( p ), ( i )
: ‘ .. 2m
Sol": Period of the function f{x) = sin nx is —
21X 2—7{ =k
Similarly, period of the function f{x) = sin (T) =k is (2%) -
k
2n ( k)
2mnx =1
Period of the fucntion f{x) = cos( . ) is (27”1) n
k
Example - 5 : If f(x) and g(x) have period T, show that h(x) = a f(x) + bg(x) where a and b are
constants, has the period T. Thus all functions of period T from a vector space.
Sol":

Since f{x) and g(x) are given to be periodic functions having a period T, so we have
Sfix +T)=Afx) for all x

g (x+T)=g (x) for all x

Hence h(x +T)=af{x+T)+bg(x+T)
=aflx) +bg(x)

= h (x) for all x

So 4 (x) a period T.

Draw the graph of the following functions from Ex.-6 to Ex. - 10.
Example - 6 : f(x) =T — x|,

Y
(O,m)
Sol":
xl =TT (@) T X
1
y
Example - 7 : f(x) = e ™
Y
Sol":
xl -7t O 7T X
1
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o) = 0if —r<x<0
Example - 8 : J(X) = xzif0<x<7r
y
(0.1)
Sol":
X T O I X
1
y

x If-n<x<0

Example - 9 : f(x):{n—xif0<x<n

y
(O.m)
Sol":
-n
¥ b O ) X
1
y
0 if-n<x<0
Example - 10: f(x)—{ e if0<x<n
y
(0,1)
Sol": -
xl hd @) % X
0,-1)




Fourier Series 6.9

6.2 : Even and odd Functions

A function f{x) is said to be even if f{—x) = f{x). Thus cos x, sec x, x?, x* are even functions.
In general, all functions having even powers are even functions e.g.

sin” X, X", cos"x, where n is an even positive integer are even fucntions.

A function f{x) is said to be odd if {—x) = —f{x). In general all functions having odd powers
are odd functions e.g. sin"x, X", where n is an odd integer.

Thus sin X, cosec X, tan x* are odd functions

Let the sufficfess‘e’ and ‘o’ denote even and odd respectively. If f{x) is an even function by
def* £(—x) = f.(x)

If /{x) is an odd function by def" f,(—x) = - (x).

Any functions f{x) can be written in terms of it’s even and odd parts such that

JO) =f.(X) +f1(X) e, (D

Replacing x by — x

S =f£ (X)) +L(X) =1 (X) = f,(X)ernne. 2)

Adding (1) & (2)

f09) + fix) = 2f (x) = £(x) = w
Substracting (2) from (1)
S ~f (0 =2,x)= /()= M

Thus, if f{x) is given we can always find even and odd points. Even and odd functions
possess the following properties.

Sum of even functions = even function

sum of odd functions = odd function

even function x even function = even function

odd function x odd function = even function

even function X odd function = odd function.

Thus if f(x) is an odd function f{x) cos nx is also an odd function but f(x) sin nx is an even
function.

If an even function is added to an odd function the result is neither even nor odd. The graph
of an even function is symmetrical about y - axis while the graph of an odd fucntion is symmetrical
about origin.

We also know that

f f(x)dx =0, where f{x) is an odd function and

f f(x)dx= 2J- J(x)dx, where f{x) is an even function
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Illustration : Determine whether the following functions are even or odd.

-1 [ o
@) x[a j (ii) log(er x2+1) (iii) sinx —cosx

a* +1

¥
Sol: (i) Let/ (x)=x(a j

a* +1

- I/ 1 s
Then f(—x)z(—x)[a_x 1]:(_)5) A :(_x)[l xJ

=x[Zi :}f(x)

So flx) is an even function.

(i) letf(x) = zog(x 11 )
Then f{x) + f(—x) = Zog(x + \/H) + Zog(—x + m)

=log (—x*+x*+1)=1log1=0
Sx)+f(=x)=0

S fx)=—fx)

So fix) is an odd function.

(i) Let fix) =sinx —cos x

Then f{—x)= sin (—x) — cos (—x) = —sin x + cos x, clearly f{—x) is neither equal to f{x) nor to
).

So fix) is neither an even function nor an odd fucntion.

6.3 : Some useful Integrals

The following integrals are useful in determining Fourier series co-efficients, where m & n
are integers.

o+27 o+27
(1) L cosnxdsz- sinnx dx =0

a

a+27 +21 .
(2) j cosnx.cosmxdx = | sinmx sinnxdx=0 , (m # n)
o

o

o+2T a+2m
3) I sinnx.cosnxdxzj. cosnx sinnxdx =0, (n=0)
o o

o+27 o+27m
4) I cos” nx dx = J sin® nxdx=m (n#0)

0 m#n
(5) J cosmx.cosnxdx =<, m=n>0

2n,m=n=0
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T, . 0, m#n, and m=n=0
(6) I sinmx.sin nxdx =

—T

T form=n>0

7 r cosmx.sinnxdx = 0

—T

Following results will be found useful while attempting problems of Fourier series

1
(1) sinnm=cos (n+—)n, =0,nel

2
Thussint=sin2n=sin 3w =............... =0
& E—cos3—n—cos5—n— =0

cos 5 > 5 T

1
(2) cosnm=sin (nﬁ“zjn =(-y,nel

Thus cos ©=cos 3w =cos St =......... =—1
cos O0=cos2m=cosdm=........ =]

n . 5m on
sm5=sm7=sm7— ............ =1
o 3n . Irn o 1x
sm7=sm7=sm7= ........... =—1

(3)  The rule for repeated integration by parts
Ju vdx =uv—u'vtu''v,—u"'v,= ...

du d’u d*u
u'=d—,u”=F,u”'=— ........ VZJVdX,VZZJVldX,V3=jV2dX ..................
X X

ax

4) je‘”‘ sinbx dx = e [a sinbx — bcosbx] +c

ax

(5) je‘”‘ cosbx dx = [acosbx +bsinbx] +c

a*+b*
Fourier Series :

Since periodic functions that occur in engineering problems are rather complicated,
representation of periodic functions in terms of a simple periodic functions is a matter of great
practical importance. We now discuss the problem of representing various functions of period 27
in terms of the simple functions 1, sin x, cos x, sin 2x, cos 2x, ..... sin nx, COS KX, .....

Definition : A series of the form

a,Ta cosx+b sinx+a, cos2x+b,sin2x+..+a cosnx+b sinnx+..

0
=a,+ Z(an cosnx +b, sinnx)

n=1
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wherea andb_arereal constants is called a trigonometric series. a_andb_are real coefficients
of the series.

Since each term of the trigonometric series is a function of period 2, it follows that if the
series convereges, then the sum is also a function of period 2.

Let f{x) be a periodic function with period 27, which can be repeated by the following
trignometric series

a . . .
fx) = 7+a1 cos X +a,cos 2x +a, cos 3x + ....... +b, sinx+b,sin2x+b, sin3x + ...

fx) = %+Zan COSHX"‘an sinnx (D)
n=1 n=1

The series (1) is called Fourier series and it’s co-efficients a, a & b (n=1, 2, 3....... ) are
called Fourier co-efficient of f{x),
6.4 : Euler’s Formulae

The Fourier series for the function f{x) in the interval a < x < o + 27 is given by

fo) = %+Zancosnx+zbn sinnx (1)
n=1 n=1

a+27

1
where a = s f(x)dx

o+27 1 po+2n

2= L[ Flocosnxdx b = L["F(x)sin nxdx
T Yo n TC Jau

n

These values a, a_, & b_are known as Euler’s formulae.

Proof : Let us assume for the time being that the series can be integrated term by term between the
limit
o&at2n

f(x)za—20+Zancosnx+ansinnx ......... (1)
n=1 n=1

To find a, Integrating (1) both sides with respect to x between the limits a0 & oc +2m, we get

a+27 a a+27

f(x)dx=— a+2ndx+ianjaéégnxdx + ibn_[ sin nx dx
T n=1 n=1

0
2 a o

a X sinnx """ “ [ —cosnx |

0 a+27 - a

:—[XL +Zan[ } +bn2[ } =?Ox2n+0+0=aon
n=1 o

2 — n |, n

a+27

f(x)dx

1
T



Fourier Series 6.13

To find a, Multiply (1) by cosnx & integrte from x = o to x = o + 27 then we get

a+27 ao a+27 a+27 o+27
J f(x) cosnxdx=7j cosnxdx+Za Jcosnx cosnxdx 4+ Zb I sinnx.cosnxdx
o o

2 n

The first and third integral on the right hand side are zero but second integral is equal to m.

a, sinnx a+2m a+2m
= — + Za J. cos® nxdx + Zb J.smnx cosnxdx
o

a+27m

S (x)cosnxdx =a n

1 po+2n
a =—| f(x)cosnxdx
TT Yo

To find b  : Multiplying each side by (1) in sin nx and integrate from x = o to o + 27, then

a+27

a+2m o+2m a+2mn X .
f(x)smnxdx——j smnxdx+z J sin nx . cos nx dx +Zb J sin nx . sin nx dx

=0+0+b .7

a+27

b, =l f(x)sinnxdx
TTYa

Cor — 1 : Making o = 0, the integral becomes 0 < x < 27w, and Formulae (1) reduces to
1 f2n
a= |,/ (odx

1 2n 1 2= .
a = __[f(X)COSHXdX b = —Jf(x)smnxdx
Tomo noogJo

Cor 2 : Putting o = —7, the interval becomes —1t < x < 7, the Formulae (1) becomes

a, = lj“ f(x)dx a = lf J(x)cosnxdx b= lf J (x)sinnxdx
T Y7 TY-n To-—m

Working Rule
Let f'(x) be a periodic function with period 2x. If the given interval is (-x, 7) :
Step — 1. Check whether f (x) is an even function or odd function.
Step — 2. (a) If / (x) is an even function, then b = 0 for all n and
ay :;Jf(x) cos nx dx, for all n > 0.
0

(b) If f'(x) is an odd function thena_= 0 for alln > 0 and

b, =£Jf(x)sinnx dx
n .
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Step — 3. If f(x) is neither an even function nor an odd function in (—r, ) or if the given interval
is not (-, ), then calculate the Fourier coefficients by using Euler’s formulae.

Illustrative Examples

Example —1 : Find the Fourier expansion of f(x) =xin—n <x <.
Sol": Let f'(x) = x. Since f'(x) is an odd functions, a = 0 for alln > 0.

iy
iy

LN P
AISO, b :;J.f(x)SanUCdx TEJ.XSII’H’DC X

n
0

—2cosnm

3 —| T Ccos i’lTE]]
s n

2| —xcosnx sinnx —2
n n 0

n=1

1 2 3
Example — 2. Find the Fourier series for f(x) =x? in —n <x < 7 and deduce that

1
® 27 and G Z 12 (i) Z ~ Z —0

Sol" : (i) Let f{x) = x% so that its F ourier representatlon is expressed as

[Sli’l X sin2x sin3x }
=2 + .

f(x)=x2= % +Zan cosnx+ansinnx ,,,,,,, (D
n=1 n=1
2

_ 1 p+m _1 T, _27-[
where a, = ;J:nf(x)dx—zjinx dX_T

1 ¢m 1 pm 1 n
a= —_[ f(X)Cosnxdx=—_[ x* cosnxdx =—.2I x* cosnx dx
nordog T 0

Y™

T
2| x%sinnx N 2xcosnx 2sinnx 2| 2wcosnm ( l)" 4
bis n n2 n} . - nz . n2

andb_= f f(x)sinnxdx = %J.n x% sinnxdx=0

Substituting these values in (1); we get
2

= 7T—+4 _—lcosx+i0052x+_—lcos3x
f(X)_ 3 12 22 32
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Substituting x = ; we get

- 1 1 1 1 1
i ——=—+—+—+—+.....
(ll) Z(zn_l)z

I 1 1 1 1 1 1 1

B 3—2+5—2 ....+22 +?+ _2_2_?_6_2 ______

1 1 1 1 1 1 i+i+i+
SRttty teet st e

X
6 4 6 24 8

(_l)nfl 7‘[2

iii) Now we have to prove =—

(iii) p § 7 12
0" 1 1 1 1

L.H.S. T iy gt

Now the given series will be

2 n
4(-1
x2=n—+z (2) cos nx

3 n
putx=0
2 n 2 n
T 4(-1) -7 4=
0= —+ cos 0 =
3 Z nz or 3 Z n2
2 © n © n-1
n (=D (=D ” 1 1 1 1
r__ _ e
 n ;‘n2 Z‘ R U R TP CRE SR
. 1
(lV) Zn4_90
n? 400 lncosx 2n?
=3+ ;(—) P AT T3
4(=1)"
TG A

n
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f(x)= %+i(an cosnx +b, sinnx) (1)

Multiplying f (x) in (1) and integrate within limit 7 to 7
j [£(x)dx = %j f(x)dx+a, ZJ £(x)cosnxdx

N f ()P dx = a—zof f0dx+a, Y j F(x)cosnxdx

N j (0P dx = a—zoj fOdx+ a, j £(x)cosnxdx

= fﬁ(xz)zdx = %fﬂxzdx + z anJ:ﬂﬂx2 cosnx dx

T 4 aO
= _[ X dx=7xnao+anz a,m

-7

57'[
o 5] e
5 5 2 5 4
T T a, 2 27 47 16
—+—|=|—=+) a —=n—+) —
= [5 5){2 z"}‘:‘s [18 e

36n* — 201" 1 167* 1
== 27 -16) — = =16) —
= 90 Zn4 90 2 n

1
= 2o
Example — 3 : Find the Fourier series to represents x — x*> fromx = -m to «
Sol" : Given, f(x)=x—x},X=—-TtOX=T1
Let the Fourier series be

@+i +ib }
f(x)= ) 1ancosnx 1 , SINNX
n= n=
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a = lr f(x).cosnxdx :lr (x—x2)cosnxdx
n T d-n mTY-n

=%[(x—x2>(—smn“xj (1-2x )[ CI‘I’S“XJ (%[‘Smnxﬂ [-rsin n7=0]

[(1 2 )cosnx} = ! ——[(1-2m)cosnm—(1+27)cosnTm]
x n’n
cosnm —4n(-1)"  —4(-1)"
= 1-2n-1-27] = ———— =
e L 1= e

b = lr f(x)sinnxdx = lJ.n (x —x*)sinnxdx
n nd-n mTY-n

:l_(x_xz)(—cosnx) (-2 )( smnx) (2)(cosnxﬂ
n| n n .

T _ 2 T
_ 1 (X_Xz)(—cosnx)_zcosnx} _ _l{(x X~)cosnx +2<:osnx}
n . s -

3 3

| n n n
1|{(m=n*)cosnmt 2cosnm 2y COSNT  2cosnm
L 4 2E08NT | (g ) COSOR | 2e0s
T n n 2 n
1 ,cosnt  2cosnrw cosnm  2cosnm
——|| - =+ ~(m-m) =
T n n’ n n
S imand)= 2D (1)
mn n

*. So the required Fourier series becomes

2 0
—4(-1)"
—%-}-z ;2 COSI’IX+Z ( ) sSinnx
1

n=1

A 1) (-1
= ———42 cosnx — 22 sinnx

3
o cosx cost _ cos 3x —sin X N sin 2x _ sin 3x
=3 o ) n 5 3
b1 COSX _ €Os8 2x cos 3x sinx sin2x sin3x
= —+4 ... + — .
3 12 3? 1 2 3
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Example — 4 : Obtain the Fourier series for f(x) = ¢, in the interval 0 <x < 2rn
Sol": Given f(x) =e¢*, 0 <x < 2m.
Let the Fourier series be

© ©
a .
fx) = 70—}— ZLZH cos nx +an SINNx
n=1 n=1

. A oy
L l Ozjg(x)dx :% Oznefxdx _ i|:e—_l} z;l[e—x}lz“ :—?l[efzn_l}l _ l—e?

0 T s 0 s T
1

a :—Jf(x)dx =—| e " cosnxdx
T Jo T

. 27
2 _x Sinnx 2n —si 1 2=
Let J e “cosnxdx = [e " } - J. (—l)e"( Smnx)dx= —_[ e sin nx dx
0 n 0 0 n nJo

2n
_ l{[ex (—cosnx):| ~ 2“(_1) ex(—cosnx)dx}
n n o Y0 n

27
1 _x COSNX L p2m . -1 1 p2n
= —{|:—e } - —J e = cosnx dx} = [67211 cos2nm — 1] - —2J e " cosnxdx
0 nJo n 0

n

n n
1 21 _ 1—6 27 2n 1_6721'[ nz 1_67211
:>(1+_2J e cosnxdx =—— :>J- e cos nxdx = ———x ———=—
n- o n 0 n n+1 n o+l
21 x 1—- e*ZTC 1 p2n . 1— e*ZTC
= J e cos nxdx = —; = —I e cos nxdx =————
0 n”+1 70 n(n”+1)

1 p2n 1 2rx
b = —Jf(x)sinnxdx = —J e " .sinnxdx
n T Jo T Y0

2 _y [ —cosnx o 2n —cosnx
Let j e sinnxdx = |e [T -, »
0 n 0 0 n

[ _yx COS2NT eO.COSOJ 1
—e +

27 x
——J e " cosnxdx
nJo

n n

2n 2n
1 o 1| _, sinnx _ sin nx
——(1-e"")—|—e" — e (-1 .. _
= n( ) [n{ n } J (=1 }(.cos2nn—l)

0 0 n

1 om 1 27 x . .
=—(1-¢7 )__2_[ ¢ sinnxdx [ 'sin nu=0]
n n- 7o

1 \p2n 1
= 1+— e *sinnxdx=—(1-¢ "
( n’ )-[0 n )
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27.( 1_ *27‘( 2 1_ *27’[
:>J‘ e *sinnxdx= © « 211 :n( 26 )
0 n (n"+1) n"+1

o _ =27
:>lJ‘ ef"sinnxdx=%
T Y0 n(n” +1)

so the required Fourier series becomes

1 _ -2n © 1 _ -2n 0 l _ -2n
e = © +Z S cosnx + wsinnx
2m n=1 TE(H + 1) n=1 7'[(1’1 + 1)
l-e?™ |1 & cosnx “ n .
- —<—+ + sinnx
s {2 ;(n2+1) ;n2+1 }

Example — 5. Expand f(x) = cos ax as a Fourier series in (-, 1) where a is not an integer.
Sol" : Since cos ax is an even function, b_ = 0 for all n.

Nowaozgjcosaxdx:E[Slnax} zsman
T

T

Tl a T a
0 0
.4y sinam
2 an

Also, a, = zjcos axcosnx dx
T
0
= lJ‘ﬂicos(n +a)x + cos(n — a)x]dx
s
0

. %{sin(n var sinfn - a)xI 1 {sin(n rayusin(n- a)n}

n+a n—a T n+a n—a

T

1 [ (n—a)sin(n+a)n+(n+a)sin(n—a)m
| etk

n[sin(n + a)Tt + sin(n - a)n]l - a[sin(n + a)Tt - sin(n - a)n]l

2
n(n —a )
. . o
n(2sinnmcosan) - a(2cosnnsinan) 2a cosnTsin arn 2a(—l)n sinamn
T 2 2 = =
n(n —a ) n(nz—az) Tt(nz—az)
.. The Fourier series is given by
+1 .
sinan  ~&| 2a(-1)"" sinan
f(x)=cosax = Z cosnx
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T—X
Example — 6. Find the Fourier series corresponding to f (x)= (—j in (0, 27). Hence prove

N B
that — =
; n’ 6

2n

4 T -12

Sol” : a, :%Tf(x)dx:%zf(n—x)z dx:i[(n_x)3] _ -1

0

2n 2n
1
Now 4, =ljf(x)c0sm dx =—J.(7t—x)2 cosnx dx
T 4n )

2n

4n n 4nm 0
1 2n
__ (n_x)d(_cosnx): -1
2nm 0 n onin
1
=2
n

2n
Also b, = ﬁ ‘([(TE - x)2 sinnx dx

n=1

6.5 : Conditions For A Fourier Series
Dirichlet conditions :

2

-1 2 Sinnx n 2 .
:—[(Tc—x) } +— (Tc—x)smnx
0

[—n(—l)zn - n]l -0

r 27 2n

= —L(Tt—x)2 cosnx} —L (n—x)cosnx
| 4mn n |, 2nm 0
r 1 27 2n

= _2n2n (Tt —x)sinnx}0 — Py ‘([sinnx dx — 0

2
‘ (Tt—x)2 _n_2+i(cosnx)
o2 12 “ R

So far we have obtained Fourier series for several functions that it is possible to expand
most of the functions as Fourier series. It was the German Mathematician peter Gustav Lejeune
Dirichlet (1805-1859) who gave the well-known sufficient conditions for uniform convergence of

the Fourier series as stated below.
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o0 o0
. . . a o
Any function f{x) can be expanded as a Fourier series — + Z a, cosnx + Z b, sinnx in the
n=1 n=lI

interval [a, o + 2], where a, a , b_are costants, provided that

(i) f(x) is periodic, single valued & finite

(i) f{x) has only a finite number of finite discontinuities and has no infinite discontinuities.

(i) f{x) has only a finite number of local maxima and minima

These conditions are known as Dirichlet conditions.

In otherwards if f(x) is a function defined in a given interval [a,, o + 27] and extended
outside this interval by f'(x + 27) = f{x) having finite number of points of ordinary discontinuity in
the interval [a, o + 27t] and having a finite number of local maxima and minima there, then the
series.

a, .
> + Zan cosnx+ an sinnx
with co-efficients a, a_, b converges to f{x) at every points of continuity and to 72 [f (x + 0)
+ f(x — 0)] at a point of discontinuity.
Here f'(x + 0) and /' (x — 0) denote the limit on the right and the limit on the left respectively.

At a point of discontinuity the sum of the series is equal to the mean of the limits on the right and
the left.

Note : Consider the function f{x) = sin iin the interval (— &, ). It attains it’s maximum
value when

2
" (2n-Dn

Where n is zero or an integer. For large values of n asn — o , the values of x as given by
(1) tend to become indefinitely small and are croweded near to the value x = 0. Thus the function

X—(n— )2 or, X

sin— has an infinite number of maxima and minima in the neighbourhood at x = 0, Since as such
X

1
one of the Dirichlet conditions not satisfied. Hence it is not possible to expand f(x) = sin — in the
X

interval (—m, ) as it contains x = 0 also.

Simillarly, the function f{x) = —— has an infinite discontinuity at x = a, and as such it
X—a

cannot be expanded as Fourier series in the interval which contain the point x = a.
6.6 : Fourier series for Discontinuous Function
Let the function f{(x) defined by f{x)
fi(x),o<x<x,
X)= {fz(x),xO <x<o+2m
where X is the point of discontinuity in the interval (a.. o + 27)

In such cases also we obtain the Fourier series for f{x) in the usual way. The values of a, a ,
b_are evaluated by (fig. 6.4)
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1 Xo a+21 Y
a = _U fitx)dc+ [ fox )dx}
T| Ja Xo

1 X, a+2mn
a= ; “ fi (x) cosnxdx+ | f, (x) cos nxdx}

1 X ) o+271 .
b, = - [L S1(x) sinnxdx + LO So(x)sin nxdx}

(Fig.6.4)
If x = x, , is the point of the finite discontinuity, the sum of the Fourier series

1| lim f( h) lim 1 B 1
- — -h)+ +h)| = = -
2o o=+ 7+ | = [ (xg=0)+ £ (x,+0)]
Note :(1) It may be seen from the graph, that at a point of finite discontinuity at x = x, there is
a finite jumps equal to BC in the value of the function f{x) at x = x,.
(2) A given function f(x) may be defined by different formula in different regions. Such
types of functions are quite common in Fourier series.

(3) At apoint of discontinuity the sum of the series is equal to the mean of the limits on the
right and left.

Illustrative Examples

Example — 1 : State give reasons whether the following functions can be expanded in Fourier
series in the interval - m <x < 7.

1
(1) cosec x, (Ans - No) f{x) = cosec x, = sinx in the interval (— &, 7). It attains maximum
1
value when x = —— ............ )
W
ne+(-1)" =

where n is zero or an integer. For large values of n as n — 0, the values of x as given by (1)
1

sinx
infinite number of maxima and minima in the neighbourhood of x = 0, As such one of the Dirichlet’s
conditions is not satisfied. It is not possible to expand f{x) = cosec x in the interval (-, m) as it
contains x = 0 also

tend to become indefinitely small and crowded near to the value x = 0. Thus function has an

(i) f{x) =sin —, No, because in the interval (-, ) . It attains it’s maximum value when
X
1 i
— = (21‘1 — 1)— or X =
X . 2 .
where n is zero or integer
For large values of n as n — oo , the values of x as given by (i) tend to become indefinitely.
Small and are crowded near to the value x = 0. Thus the function sin x has an infinite number of
maxima and minima in the neighbourhood of x = 0. As such one of the Dirichlet’s condition is not

1
satisfied. Hence it is not possible to expand f(x) = sin — in the interval (—r, 7) as it contains x = 0
X

also.



