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=% CHAPTER - 3 =

Vector Differentiation

3.1 : Introduction

Vector analysis provides a convenient shorthand by means of which mathematical relations
between physical quantities may be compactly written and exhibited.

The physical quantities considered in vector analysis are of two kinds, scalars and vectors.
A scalar quantity is one which is completely specified when its magnitude, size or number of units
according to scale is given. Examples of scalars are mass, temperature, electric charge and quantity
of heat. A vector quantity is one whose specification involves in addition to magnitude, a direction.
Thus displacement, velocity, force, electric current, temperature gradient are all vectors.

A vector is represented algebraically by a letter in bold type or by a bar over the symbol
representing it. Geometrically, it is represented by a directed line segment with an arrowhead on it,
the length indicating magnitude, the inclination indicating direction, the arrowhead indicating
sense. Vector calculus comprising vector differentiation. Many concepts are highly incorporated
in various branches of engineering and technology.

3.2: Vector Function
Definition :

If to each value of a scalar ‘t’belonging to some interval [a, b] of real numbers, there
corresponds a vector r, we say taht r is a vector valued function (or vector function ) of a scalar
variable t and we write r = r (t) or r = f (t)

The law of correspondence is called the function. The statement r = f (t) implies that the
function f associates to each scalar ¢ belonging to some interval [a, ], a vector r. The vector r is
the value of function for scalar z.

Decomposition of a vector valued function :

Vector Equation :

Let . j, k constitute a right handed triad of mutually perpendecular non-coplanar unit vectors.
We further know that every vector in space can be uniquely expressed as a linear combination of
three non-planar vectors.
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Therefore, we may write

r=7)=£01+ £+ 0k
Where f,(t), £,(t), f,(t) are scalar function with independent variable 7.
f(t) is called vector valued function because for any particular value of ¢ the value f(t) is
a vector, relative to the orthonormal triad ; ,j,]€ of vector.
Equation of surface :
? (%, ¥, z) = 0 represent a surface parametric equation of surface.
x=fiuv),y=r(uv)z=13(uv)
Parametric eq” of surface where u and v are two independent parameter.

Equation of curve :

Def" : The locus of a point whose p.v. T w.r.t. some fixed point origin function of single
independent parameter is determined as space curve.

T = fi(0i+ £(0)]+ 0k T =T(u)s 7 =x(0)i + p(e)] +2(2)k
Equation of curve :
1. F (x, 5, z) = 0 = F.(x, ), z) equation of curve in Cartesian co-ordinate.

2. Parametric equation of curve : x=¢,(¢), y = d,(¢), z = ¢5(¢)

3. Vector equation of curve : T =/ ( t ) = £(8)i+ £ (0 + f(1)k

Hllustration :

Consider a particle moving in space so that at each instant ¢ of time particle is at some point
whose position vector with reference to a given origin O is r. Thus, the movement of the particle
associates to each instant ¢ of time a vector r. Therefore the vector r is a function of the scalar
variable 7.

N
a

Hlustration — 1 : Find equation of straight line passing a point A( ) is parallel to

N
vector b .

Solution : Let P be any point on the required line whose p.v. is A(g)

T w.r.t. origin ‘O’. (fig. 3.1) R P
L AP=T-4as AP=T7 3 .
AP parallel tob . a N
T
T-a=xb B
| T=xb+a | where x is some scalar. o Fig 3.1
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Illustration — 2 : Find equation of line passing through points whose p.v. are 2,5 W.r.t. origin.

Solution : Let P be any point on the required line whose P.V. is T w.r.t. origin O. (fig. 3.2)
AB=b-a. AP=Toa {% H) A B(b) P

E)) is parallel to AB .. 1—a =x| b—a
-> o ¢
SLr=a+ (b ) a b s

— -
r=(1- K)a+1< o Fig. 3.2

Illustration — 3 : Find the equation of plane passing through a point whose p.v. is a and parallel
to two given vector [_; and ¢ .

Solution : Let P be any point on the required plane whose p.v. is
T wr.torigin ‘O’. (fig. 3.3)
AP=T-2a

Required plane is parallel to given two vector b &

AU

ANT
¢ separately.
" b & c arelicontherequiredplane AP'= o+ B¢ -
T—a=ab+Bc> T=a+tab+pc O Fig. 3.3

Illustration — 4 : Find equation of a plane whose normals are parallel to a vector n .
Solution : d = ON = Perpendicular from origin on the required plane. (fig. 3.4)

Normal vector n is only ON.

Now ON = Projection of (ﬁf =r-n

r-n | /.
The direction of N , —, d = L
i n /
—~| T a=d Required eq" of plane in normal term. \f (fig 3.4)
O

3.3: Limit of a vector function
A vector valued function r (t) is said to tend to a limit L when t tends to t, if for any given
positive number e, however small, there corresponds a positive number § such that

| f(t)—L|<e whenever 0<t—t,|<3.

We can also write, lim r(t) =L, if and only if hm || r(t)-LJ|=0

tot,

Here the vector #(t) tends to L in both length as well as direction as t tends to t,.
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Theorem — 1.
(@) Ifr®)=x(t) § +y(t) j , then limF(t) = yglx(t)h lim y(t)j
provided the limits of component Ofunctions Oexists. 0
(b) Ifr(t)=x(t) j +y(t) j +=t) k, then }Lr{l rt) = }iglx(t) i+ }ggl y(t) j + }E? z) K,
provided the limits of components functioons exists.U U 0
Proof: (b) r(t)= <x(t),y(t),z(t)>

Let }irglx(t) =1, }lr{l y(t)=1,and thrtn z(t)=1,
LetL= <llalzal3>

s limor(t) = <}Ll}lx(t), lim y(t), lim Z(t)> = (lohsb) =L=1i+Lj+Lk

t—>t,

= lim x(t){ +lim y(t)j + lim z(t)k
t—>t, tot, tot,

3.4 : Algebra of limits of vector valued functions

Lte 7 (t) and 7 (t) be vector valued functions in R* or R’. Then the following rules of limits

hold.
Theorem — 2

(@) Hm[r(0)£r ()] =lims(t)+limr(t)
(b) }ij{l[n(t).rz(t)] =(}ir}1r1(t)).(}irlnrz(t))
© lmln(0xe(0] = (timr (o) < tim (o)

(d) lim(cr (t)) = climr(t), where ¢ is a constant vector.
11,

Proof : 0

(@ Letr(®)=x®i+ty®jt+z Okandr()=x,O)i+y,D)j+z Dk
lim [1,(1) +1,(1)]
M [ (0 + 5, (0)i-+ (3, (0 + Y2 () + (2, () + 2, (D)K]
=t (0,0} i+ iy, 0+ v, (0} ] +| iz 0+ 2,00 [k
= [thrP x,(x)i+ t11r¥1 y,(1)j+ }1r¥1 z, (t)k} + [thrP X, ()i + tlll’%l y,(t)j+ thrP Z, (t)k}
= limp, (1) + limr, (1)

Similarly,

Proof of m[A(t)—r(t)] = limr(t) - limp (t).

(b), (¢), (d) are left as an exercises.
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Example — 1: Find the following limits

fim[ 2L L lim| 27+ 20 i1 cos3tk
@ Se 4042t (b) i1 | t? tz—lj

Solution :

1+
(ot 1 N S 0 PR VI I PR £ a0 1
. 2 :1 1 - — _ 1. .
@ 122(4t3+2’+t1) (tgg4t3+2}+(tggt)‘] 1524 3 [0 =is0]
T3
Alternatively :
. P+ R S S 1 1
limr(t) =lim ,—) = {lim Jim—) =(=,0) = =7 +0j
t—o () taoo<4t3+2 t> <taoo4t3+2 t—o0 t> <4 > 4l+0-]

(b) lim(zi +%j + cos 3t k)

t—1 tz
=<lim%,lim#,limcos3t> =<2,1im£,cos3> =<2,l,cos3>
t-l 2 ol 12— tol t>1 Dt 2

3.5: Continuity of vector function
If r(t) = f,(0)i + f(1)j + f,(Dk, then r(t) is continuous at t, when t; is in the domain of the
component functions f,(t), f,(t) and £,(t) and

li li li
(5 1, hO =4, (S AO=A) and ( 5 £O=/()

A vector valued function r(t) is continuous at t =t if
(1) r (t,) is defined

(i1) imr(z) exists, i.e. limr(t) =limr(t)
-1, 1>ty =1,
Thus, r(t) is continuous at t = t, if limr(¢) = r(¢,)
-1,

Continuity on an interval
Let I =[a, b]. Then the vector valued function r(t) is continuous on I if it is continuous at
each point of L.

Example — 2 :

° The vector valued function r (t) = <2t, 3t,t% + t> is continuous, because

limr(t) is (2t,, 3t,, t; +1,) which is r(t,)

=1
- K(t) is continuous for all values of t; i.e., on the interval (-0, o)
Remark :
A vector valued function r(t) is continuous at t = t if and only if the component functions
are continuous at t =t .
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,. sint,
. ti+—j+tk, t=0
Example — 3 : Test for continuity of r(t) = t

js t=0
at t=0

2 Sint
Solution : Let r(t) = x(t) i +y (t) j + z(t) k , where x(t)=t",y(t) :Tand z(t)=t

1i£13x(t) =0, ltg% y(t)=1 and ltlil(} z(t)=0
Hence the limit exists

L 2 .osint), (.. L )

< lim r(t) —(lglgt )t +(1tglg—t )J +(13§3t)k =0i +1j+0k =
and r(0) = j

lin(} r(t) =r(0)
Thus r (t) is continuous at t = 0

Example — 4 : Determine whether r (t) is continuous at t =0 ?
(a) r(t)=3sinti+3tj

cost .
(b) r@)=t + TJHk

Solution : (a) limr(t) =({grg35int)i+({grg3t)j =0i+0j=0
r(0)=0i+0j=0
- My (1) = r (0)

. r(t) is continuous at £ = 0

. . _cost . . .
(b) Since ltlil(}T does not exist, therefore r (t) is not continuous at t = 0

3.6 : Differentiation and Integration of Vector function

In this section we shall discuss vector derivatives, tangent vectors, properties of vector
derivatives, velocity vector, speed, direction of motion, acceleration vector.

The differentiation of vector-valued function is similar to that of differentiation of real-
valued function.

3.7 : Differentiation of Vector Function

Differentiability — We define the derivative of a vector-valued function f{t) at a point t = a by
the same type of limit equation as we use for scalar functions. Thus,
a+h)-fla
f'(a):limM ...... (1)

h—0 h

provided the limit on the right exists. We then expect that fis differentiable at t = a each of
its components is differentiable at t = a. In this connection we prove the following result :
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Definition : Vector derivative
Let r(t) be a vector valued function. The derivative of #(t) with respect to ¢ is another vector-

r(t+h)—r(t)
h

valued function r” (t)defined by r'(t) = lim , provided the limit exists.

I\ e O £

Fig. 3.4 (a) Derivatives of Vectors
& d
dt’dt
Theorem — 3 : If r(t) be a vector valued function, there r is differentiable at t if and only iff each

of the component functions of r(t) are differentiable at t.

Proof : Let r(t) be a vector-valued function in R3.
Suppose r(t) = x(t) i + y(t) j + z(t) k

r(t+h)—r(t)
h

Note : We can use symbols [r(t)] or r”(t) for the derivative of r(t).

()= }gl(}

lim [x(t+h)i+y(t+h)j+z(t+h)k]—[x(t)i +y(t)j+ z(t)k]

h—0 h
- (}]m%w), + (E%WJJ + (}}n‘}w)k

=x'()i+y(t)j+z(k
Theorem — 4 : Every differentiable vector-valued functions are continuous but not the converse is
not true.
Proof : Let r(t) be a differentiable vector valued function at ¢.

lim[r(t+h) = r(1)]

_ hm( r(t+ h; —r(t) ‘h) i PO ()

h—0

im(h) =#(1).0=0

h—0 h h

= r(¢) is continuous at ¢.

Hence every differentiable vector valued function is continuous at ¢
The converse is not true. Take r (t) = |t |i

S =r0) A t]i -0 = t]
~limr(t) =0 = r(0)
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Hence r(t) is continuous at ¢ =0

But, lim
t—0

t—0

r®-r _ lim‘ L does not exist.
t—0 t

. ' (t) does not exist

= r(t) is not differentiable at t = 0.
Example — 5 : If r(t) = (a cost) i + (a sint) j + bt k, then find #’ (t).
Solution : We have

F(t)= %(a cost)i +%(a sint)j+ %(bt)k = (—asint) i + (a cost) j + bk

Rules for differentiating vector functions
Theorem -5 :

If r (t) and r,(t) be vector valued functions, then the following two results holds good in
differentiation.

L.

2.

Proof :

d .
& (c) = 0 where c is a constant vector

(an, +br,)' =ar/+br,
Inparticularifa = 1,b =1, then (r, +r,)) =1 + 7,

(ar) =ar'

(r.r)=r'r+r.r'ie, %["l(t)-"z ] = ﬁ(t)-{%rz (t)} ‘{%"1 (t)}fz (t)

(rxr)'=r'<rtrxr'ie., %['}(t)xrz(t)] = 'i(t)x[%"z(t)} +{§r](t)}xrz(t)
[F(h(t)]" = h'()r' (h(t))

%[f(t)"(t)] = [%f(t)}'(t) + (1) [%"(t)} , where f{t) is a real valued differentiable

function

(1) Let e=cji+c,j+ck

: .| d
%(c) =|:%(cl):|l +|:%(C2):|j+|:a(c3):|k =0i+0j+0k: 0

@ SIr+ )

i D+ (b0 + 1 (0]

h—0 h
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{mn(wh}z—n(t)} {mm”hﬁ_rz(t)} ol Lno]ie
(r+n) =r+n
(4) Letf(t)=r (t).r[()
o 4 o S - f
0= In O 0] =limd =
im r(t+h).r(t+h)—r(t).r(t)

h—0 h

lim r(t+h)r(t+h)—r(t+h).r(t)+r(t+h).r(t)—n(t).r(t)

h—0 h
Pty 2O RO o R - ()
—lim h h
h—0 h

=n(0-— rz(t)+rz(t) rl(t) =1 Hnen

Remark : Is }]in%r1 (t+h)=nr(t) ?

Orthogonality condition
If r(t) be a vector valued function such that r(t).r'(t) = 0, then
r and r'are orthogonal.
Hllustration : Obtain the derivative of £ (t) = (sin’t) j + (/n t)j + tan'(3t) k
Solution : The function and its derivative are defined at every positive value of t.
3 A
k
1+9t*

We not give the geometrical interpretation of the derivative at a vector valued function.

f'():(2s1ntcost) +1J+

Geometrical Representation of Derivative : Q

Draw the vector f (t) for values of the independent -
variable t in some interval containing t and ~ t+ At

from the same initial point O. Then the locus of head Ft+ At
of arrows representating f for different values of t

traces out a space curve. (fig. 3.5) P
Let OP =f(t) and OQ = f(t + At), then
f(t+A)—f(=0Q-OP=PQ=Af (say), O
Hence g lim —— y Fig. 3.5 : Derivative of a vector function

dt At—0 At
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d
The direction of ?J: is the limiting direction % or of |Af] . But as Q tends to P, PQ tends to

d
the tangent line at P. Hence the direction of ?]: is along the tangent to the space curve traced

out by P. Let s denote the length of the arc of this curve from a fixed point on it upto P. Then

d
the magnitude of ?{ is given by

| _
dt

A V] as s
lim = = Jim . = ==
A0 At A0 As At dt

e the rati |Af]  chord PQ
since the ratio At arc PQ
Thus derivative of a vector function represents a vector whose direction is tangent to the

—>lasAt—> 0

ds
space curve traced by the vector function and the magnitude is m where s is the arc length

from a fixed point on the curve to the variable point representing the vector function.

You may note here that a vector will change if either its magnitude changes or direction
changes or both direction and magnitude changes. In this regard, the following results may
be remembered :

d
(a) The necessary and sufficient condition for f'(t) to be constant is ?{ =0.

(b) The necessary and sufficient condition for f (t) to have constant magnitude is

dr
I a 0.
(c) The necessary and sufficient condition for f (t) to have constant/uniform direction is
dr
o 0.

The familiar rules of differentiation on real functions yield corresponding rules for
differentiating vector functions; for example,
(i) (Cf) =Cf" (Cis a constant). (i) (uxv)=u=xvVv

du af . : .
(i) (uf) = Ef +HE (u is a scalar function of t). (iv) (wv) =u' -v+u-Vv
v) (uxv)=uxv+uxy
(vi) Ju vw]' =[u" v wl+[u v w]+[uv w]
Vector Calculus :

e
Let A, B, C are vector valued function in single parameter variable parameter u.

> - - -
MU i B ) R
’ du du du
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du du du
N
- - - - -
4 iA><B :iA ><B+A><—B
du du du
5 iABC =d—A~BC+Ad—BC+ABd—C
: du du du du
6 4 Ax (B xC) :d—Ax BxC|+Ax d—BxC + Ax Bxd—C
du| du du du
- dr
¢ 9 _:0
7. If ©f ’is constant -
S ()= fi(w) i+ S5 ()it 5wk
8. If F is vector constant in magnitude having variable direction. f)x dd—f =0
R t
Le. /7 is parallel to dd—f
t

Applications of Derivatives.

The simplest application of vector calculus is some
basic facts about curves in space.

Given a Cartesian coordinate system, we may
represent a curve C by a vector function

T(0) = x(t)i + y(0)j+z(0)k
Here to each value of the real variable t, there
corresponds a point of C having position vector
r(t,). (fig. 3.6)
For example, any straight line L can be represented
in the form r(t) = a + tb,
Where a and b are constant vectors and line L. passes

through the point A with position vector r = a and
has the direction of b. (fig. 3.7)

The vector function T(t)=acost i+bsint]

represents an ellipse in the xy-plane with centre at
origin and axes in the directions of x and y axes.

Further, if a curve C is represented by a

Fig. 3.6
X Parametric Representation
of a curve

X

(Fig. 3.7)
(Parametric Representations of
Straight line)
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3.8:

. . -
continuously differentiable vector function r(t), where t
is any parameter, then the vector.
a7 . r(t+a)-T(1)

—=lim
dt At—0 At

has the direction of the tangent to the curve C at P(t). (fig. 3.8)
Thus, the position vector of a point on the tangent is

the sum of the position vector ¢ of a point. P on the

curve and a vector in the direction of the tangent. Hence
the parametric representation of the tangent is where

> dr : (Fig. 3.8)
both r and — depend on P and the parameter o is Representation of the
a real variables. tangent to a curve

Vector Function of a Single Variable and the Derivative of a Vector
Let the position vector of a point P(x, y, z) in space be
F=xi+ yj +zk

Ifx, y, z are all functions of a single parameter ¢, then 7 is said to be a vector function of ¢
which is also referred to as a vector point function usually denoted as

F=x(0)i+(t)j +z(t)k
is called as the vector equation of the curve.

On giving a small increment 8¢ to ¢ 7 gets an increament &7
Let P and Q be two neighbouring points on the curve.

Let 55:7 and OQ =7 +6r

S dr
dt
T+ &7, \ p P(x,y, 2)
T
S O S
(Fig. 3.9) (Fig. 3.10)

PQ =00 —-OP = 6r by a basic property.

The derivative of the vector 7 (z) is denoted and is defined as follows.

ai F(t+8t)—F(t
Toi()= 1 ferd)-re) (1)
dt 80 ot
. OF dr S5
Bltlil%)g = 7 sa vector parallel to the tangent at P to the curve , = ¢ .
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Geometrical meaning of the derivative of a vector
As ot > 0, Q — P which means that the chord PQ approaches the tangent to the curves at P.

7
Thus, geometrically we can say that — is a vector along the tangent to the curve at P.

dt
dr
Physical meaning of ar

Since 7 = xi + yj + zk represents the positive vector of a point moving along a curve, x, y, z

will be a function of the time variable ¢ and accordingly 7 is a function of the time variable ¢.

dr
= gives the velocity of the particle at time 7.

<l

— — 2—
Further a = v = i(d_r) = d—; represents the rate of change of velocity y and is called the
dt dt\ dt dt

acceleration of the particle at time ¢.

dr| ds

o = ar is the speed of P where s is the arc length measured from a fixed point on

the curve onto the point P along the curve.
Remark :

Further |‘7| =

When a particle moves along the curve velocity vector is directed along the tangent.
Derivative of a constant vector :
A vector is said to be constant if both it’s magnitude and direction are fixed. If either of these
changes the vector is not constant. i.e., The derivative of a constant vector is always zero or
(null) vector.

S dr
Geometrical interpretation of r and e

Prove that the following :

i Vd_v_Vd—V Wh vl =
(1) dt a ere |V|—V,
Proof s We know —(i-7)= 2.5 +5. 2
roof : We know v " i
Taking Gi< ¥ in the above ——(¥-¥)= .47 %Y
aking i =V in the above - m o
d . dv
_— =2V — .
dV(V ) th ................... (1)
But we know v’ =v* [..[V]=V]
d /., dv
- —1|Vv :2V_ .
dv( ) g e (11)
Now from (i) and (ii)
:>2Vﬂ:2{;.d_v N V~d—V:§}.ﬁ
dt dt dt t




Vector Differentiation 3.15

- dv
(i) For a vector v of a constant length iff v i 0

Proof': Necessary part

Let v is a constant length i.e.,

V| = v (say) const.
Now we know \7~ﬂ:v~ﬂ:v~0=0
dt dt

Sufficient Part : Let us suppose that v 2—: =0

V- d_V = g =07 0 —
= - di [ v#0] = v=constant
= |Vf| = const. = V has const. length.

_d(. du) . d%
T GRS RaTeY

d(. du

Proof: L.H.S.=a UXE
- du . _ dv
Weknow—(uxv)_—xv—i-ux—
t t dt

Taking v = du
dt

- - - - 2 2
i(ﬁxﬂ):ﬂxﬂ—kﬁxi(ﬂ):0+u><d_u:ﬁ><ﬁ
dt dt dt dt dt\ dt dt? dt?

- du
(iv) If'the vector u has a fixed direction if and only if U X m =0

. du =

Proof : Necessary part — Given u was a fixed direction we have to show U X i 0
Let j=y-fi (where |ﬁ| =u and n is a unit vector.)

Since u has fixed direction = 1 has a fixed direction and also it has a constant length.

= 0 = constant vector.

d_,
dt
ﬁxd—ﬁ—wﬁxi(wﬁ) :u-ﬁx[ﬂ-ﬁ+u-d—ﬁ}
Now u>x-== dt dt dt
a3 A0 :ﬁ-ﬂ(ﬁxﬁ)za
dt dt

- u —
Sufficient part : Given that U X P 0

. du
We have to show that i was a fixed direction. Since U X a =0
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u du
Since u and — - are parallel vectors. But —— is the vector is the tangential to the curve =1 (t)

dt dt
at the point P (say).
du
So m has a fixed direction which is tangential to the curves at P.
u
= 1 has a fixed direction. Since it is parallel to a
3.9 : Tangential Component of Acceleration of Particle Moving Curve
T irAi

Let the particle ‘P’ moves along a
curve. Let T be p.v. of the particle at any A Q (t+At)
instant ‘t’. Let Q be another position on the ™A

. R e

curve at instant t + At whose p.v. is T + Ar ‘xb‘ 2

W.r.t. origin.

tangential direction and normal direction at P
and i + Ai, j + Aj be the unit vector along iig p(t)
tangential and normal direction at Q. (fig. 3.11)

.V>A¢}/
\ A

Let i and j be the unit vector along i

O+Ad

)
Fig. 3.11

Let tangent at P and Q makes angle ¢, ¢ + A ¢ with X-direction.

Transform unit vectors ; ,]A',f +Af and j + Aj’ for common origin O'. (fig.3.12)

. . . A
O'AB is an isosceles triangle where O'A =1,

—

O'B=7#+Af and AB=Ai.
and ZBO'A = A¢ perpendicular O'C on AB.

scoA=28 oAl
2”7 2
In O’AC right angle triangle,
Ai
. (A AC |2
sinf — |=——= ,
2) OA i
(MO (AT (Ad '
s1n(7J =7 s |All=2 sm(T) ¢oli|=1)

A

A Sin(zd))

i

—| =———=, Taking as Ap — 0.
M| A g A0
2
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3.10:

sin A?d) d
.y i|
AZ¢I—I>10 Ad Aél—r}o Ad @ B
2
di o
= @ is an unit vector whose direction is linear direction of Ai. The similar direction of Ai is j.
Sdi
"3 j
. Ad
- , G AL Z i M dJ j . o
Similarly AO'DE  (;" A¢ Ab>0 ( ¢j = d_¢ is an unit vector whose direction

is linear direction of Aj. The similar direction of A} is opposite direction of i

d_ 4
d¢
Expression for acceleration
ds »
The velocity in tangential and normal component is given by V= I i

Differentiate w.r.t. we get

dV d ds ~\ . d(ds)\ -~ ds(di
— 1| a=—|—|1+—
dt delde )0 dtldt de\ dr
d’s o, ds(di dp ds) s - Ad¢ .
= — — =—- 14+ =
a delde ds dt) “ae ) s d¢ -/

KNI
a P

ds
Where p =— = radius of curvature at P.

(1

do
d’ dfds) dv [._dv: v2 A
— |la=—1+—]
dt? dt dt Cdt dt

Radial and Transverse Component of Velocity and Acceleration
Let a particle P moving along the curve with its position (r, 8) in polar co-ordinate. Where
—
r = length of P from origin O and 0 is angle where radius vector OP makes with the direction of

X-axis.
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As particle moves along the curve. Let Q be i+ Ai

another position, whose position is given (r

R (r+Ar, 6 + AD)

+ Ar, 6 + AB) in polar co-ordinate at instead t
+At. Let i and J be the unit vectors along
radial and transverse direction representation

at P and { + A/ and j+Aj be the unit

vectors along radial and transverse direction
at Q. Others unit vectors i, j are functions of
0. (fig 3.13)

X
Fig. 3.13

Transfer unit vector;, ; and { + Ai, j + Aj to a common origin O'. (fig. 3.14)
O'AB is an isoscale triangle where O'A =iand O'B = i+ Ai
—>
. AB=Aiand ZBO'A=A6
Draw perpendicular O'C on AB

AC=A scoa-20
2 2

Now right angle A CO'A
‘A—" Ai

AO ¢ 7
SIH[TJ = ——) _ L _
‘O'A i

A’.‘
:>|Ai| zzsin(%e) 3‘?; =

Taking lim as A6 — 0.

sin— | 4
A%I—I;IOA_G - A[;;I—I)l() Aie % -
2
= o lsan unit vector. Whose, direction is similar direction of Ai. The limiting direction of Ai
is j.
S
—do
A
sin— |
o op fim | = fim —2 (4]
Similarly from O'DE (5" Ag| ~ 050 A a0l =

2
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= Q0 s unit vector whose direction is linear direction of Aj. The linear direction of Aj is

dj )
opposite direction of 1. | - d_é =-i

Expression for velocity :

OP= T, Thenp.v. of point Pic, Op—F—r;

Velocity at P, ar_ i(r . I)

dt dt
dl"\_.dl dr'\_.dl de - df » _ do~
V=—:14T1 — i4+T- V=—i+T-—]
dt dt dt de dt dt dt

. . dr . de
Thus, radial and transverse components of velocity are = m and r— represented.

Expression for Acceleration :
The velocity is radial and transverse component form is given by.

:(}'::l:\-i-;ﬂ)-i- ;éj'i'}_’:éj-i-l_’:éﬂ) ('rﬁ'f+*dl d@) V91+V91+”9d] de)
dt dt do dt do dt

—Fi+F0]+r0j+F0 -7 0] —(”—”9 )l+(2”9+ 9

d*  _(doY |~ (,dF do _ d°0) . dzfq 1 _dfdo _,d%)
= P | |1+ 27— |J = j — A+ — ]

dt dt dt dt dr? dt’ 77 dt dt

A’ (d0Y' ] 1(d (., do))
=|——T|— | [i+=|—|T"-—]]

dt? dt T\ dt dt

, , d’t  _(do ,df do _do”

The radial and transverse component of acceleration ar F_r m and | < 4 dt dt

3.11: Arc Length along a space curve

To measure distance along a smooth curve in space is that have a measurable length.
To locate points along these curves by giving their directed distance ‘s’ along the curves from
same base point. To locate points on co-ordinate axes by giving their directed distance from the origin.
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The length of a smooth curve #(7) = x(¢)i + y(¢)j + z(t)lg ,a<t<bie., ‘t increases from

2 2 2
- avoris 1= [T (2 o[ £) )
/\M

Fig. 3.15

,,
The length of a velocity vector e i.e., the square root of equation (1) is |v| then Arc length

b
formula, L= [ fde ... @).

If we choose base point P(#)) on smooth curve ‘C” parameterized by the, each value of ¢ determines
a point P(f) = (x(?), y(¢), z(¥)) on ‘C’ and a ‘directed distance’.

s(t) = J.t: |v(r)| dt

If > ¢, S(¢) is the distance from P(z) to P(¢). If ¢ <z, S(¢) is negative of the distance. Each value
of S determines a point on C and this parametrizes C with respect to S. We call S an arc length
parameter for the curve Arc length parameter with base point P(z)).

s(t) = J:) \/[x'(r)]IZ +[y'(1;)]l2 +[z'(1;)]l2 dv = J:ln|v(r)| dr .

Illustration : A glider is soaring upward along the helix #(t) = (cost)i + (sint) j + tk . How far does

the glider travel along it’s path fromt=0to t=2m
Solution : The path segment during this time corresponding to one full turn of the helix. The length of

b
this portion of the curve is L = J- |v|dt .
a

_ LZ“J(_smz)z +(cost)? +(1) dr

21
= J;) N2dt =272 units of length.
3.12 : Derivative of a vector in terms of it’'s components

Let 7 be a vector function of scalar variable t.

A A

Let, T=xi+yj+zkwhere i, J and k are unit vectors in directions of x-axis, y-axis, z-axis

respectively. X, y, z are components of T along these directions respectively. As T is a function of
t.

. X, Y, z are also functions of't.
dF _dysy dyay dosy diodxe . dj dys  dk | dza
—=—(xi)+—yj)+ —(2k) = x—+—i+y—=+—j+z—+—k
a0~ a0 g D) g oK) = ey g i e e g

:§I+ﬂ}+%£ ..d_{_ij_d_lz_()
dt  dt dt dt dt dt



Vector Differentiation 3.21

2 2 2
d;:dff+d§/f dzzk
dt dt dt dt
Le. 7= f,(0) + £,(0)] + f3(0)k
Ifx =10,y =/, z=£(1)

dr 2 A r
Then d_It.:fl'(t)l + 12" ()5 + 15 (tk

To differentiate a vector, differentiate its components only.

d27 A .
_flu( )l +f2”j +f3”([)k

_t{clfl ()= szz(f)} =c f) (1) £ e, f5(1) where ¢, and c, are constants.
d(>>) > dG dF >
Property — 1 : E(F-G) F-
> > > o
where F = F(t) and G = G(t)
Proof. Let F = fii+ f,j+ f3k and G = g,i + g, ] + gk be two vector functions of 7.
Now F.G = f1g1 + 28 + 38 =211
d
( ) —2 fig = E(flgl)

dg, , df, dg df
Z(f d‘ d‘ ):z]q 2711+Zd112g1

Thus i F-G Fﬂ d—F G
dt dt dt

d(> >\ > dG dF -
P _2: 8 FxG|=Fx2Y 4T G
ropery dt( ) dt dt

- -
Proof : Let F=fii+ f,j+ f3k and G = gji + g, j + g3k be two vector functions of t.

~ A~

i ]k
Now FxG=|f, fo fi|=2((frgs— fr8)
g & &

d -> o d ,_\d
( Gj=d—21(fzg3 f3g2) :ZZE(fz&_ﬁgz)

oot} 55 30)
Sar ot

dg 4 d d
( RCEN fz) Zi(%&‘%&)
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i k| [Pk

d d d - -
= fi ) f3+a—ﬂ%‘d—£»deF»
dg, dg, dg, ! ! Ll =Fx——+——xG
— — ] & & & dr dt
dt dt dt

d(> >\ > dG dF -
Thus 2| Fx G |= Fx 42+ 25 4G
us dt( ) di  di

Derivative of triple products
Now we define the formula for derivative of triple products :

d _du dv dw
Theorem - 6 : (a) a[u.(vxw)] —E-(vxw)ﬂt. Pl R R
or [uvw] =[u'vw]+[uv w|+[uvw]

where u = u(t), v =v (t) and w = w(t) be differentiable vector valued functions.

(b) %[ux(vxw)] =((11—ltl><(v><w) +ux(i—\t]xw) +u><(v><(i1—vtvj

Proof': (a) %[u.(v X w)] = (;_l:'(v XwW)+ u.%(v X W)

du [dv dw}
=—.(VXW)+u| —xXW+rXx—
dt dt dt

du( +u(dvxw)+u(vxdw)
=— (VX ) . —_—
dt vxw) dt dt

Proof of (b) is left as an exercise.
3.13 : Vector valued function with constant magnitude
Theorem — 7: The necessary and sufficient condition for the differentiable vector-valued function
d
r(t) in R? or R? to have constant magnitude || r(t)|| for all t is r(t). a(l‘(t)) =0

ie.r(t). ¥ (1)=0
Proof:  We know that r(t) . r(t) = ||r(t)|P
Differentiating w.r.t. t, we have

dr dr d
r(t)-a+a-r(t) = 2H"(t)HEH"(t)H

d
Suppose, r(t)-ar(t) =0
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d
= = r(t)]=0
Ol

=4 r(t)||oo is constant

If || ¥ (t) || is constant, then, ||  (t) |’ is constant

d o
— | rt)[[=0
= llr]

=2 r(t).%r(t) =0 = r(t).%r(t) =0

Example —1: Let r (t) = ti+2j+ £k Find M r(0)- ¢ (1) x # (1))
Solution : We have, r (t)=ti+t*j+ t'k.

d d d
- - — i — (12Yi+ — (Y k= 1 : 2
SoF () dt(t)z+dt(t)]+dt(t)k i+2tj+3t2k

d d d
" — o sl . 3 _ . .
PO= 5 (it @0+ B k=0i+2j+6tk

i j k
P Oxr @) =]l 2t 3| =6ri-6tj+2k
0 2 6t

rt)- (F(t) x r'(t) = <t, t?, t3> . <6t2, —6t, 2> = 6t3+ (—613) + 263 =283

lim p (). (@ () xr” ()= lim 26=2x8=16

t—2
Integration of Vector-valued function

If the vector-valued function R(t) be the derivative of another vector valued function r(t),
then r(t) is an integral of R(t) with respect to t and we write it as

IR(‘[) dt =r(t) +c, where c is an arbitrary constant vector.

Important results on antiderivative of vector- valued function:

1. J2r(t) %dt = r(t).r(t) +c= Hr(t) H2 te
2. J.[r(t)xrﬂ(t)] dt= I‘(t) x Ccli_: +e
3. %Ur(t)dt}=r(t) and Ir’(t)dt:r(t)+c

4. IR =x(®)i+y O]+ 20 k then [r(t)dt=([x(0dt)i +([y(®dt)j+ [(2(0dt)k
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Example — 2 : Evaluate :
2. . l t —t 2
(a) I(t i—4tj+ tk)dt (b) I<e e 3t >dt

© [[(cos2tsinae)de (@) [(¢%i+t)at

Solution :
(a) j(rzi—4tj+%k)dt
(Itzdt)t—(I4tdt)]+U%dt)k :%t3i—2t2j+ln|t|k
®  [{ee 3 )a
< edtj' “dt, 3¢ dt> (¢—e"t)=ci-e'j+fk

(© jf(cosztnsinzt j)dt

in2t. —cos2t 1 1),
_sin }i+ cos } =(0- 0)1+(2 E)J=0i+j:j

2 2

37 177
d J'lg(t%l'-i-t_%j)dt :§t2:| i+2t2:| i :§(93/2 _1)i+2(93/2_1)j =§(26)i+4j

1 1

=2i+4j
3

Definite integral of vector valued function
Let r (t) be continuous (not necessarily differentiable) function on an interval a <t <b.

The definite integral is defined as J.” (Ddt=_lim Z’”

max At —0

- .Tx(t)dt i+ .Ty(t)dt j+ .Tz(t)dt k

Thus, if r(t) =x(t) i + y(t) j + 2(t) k then, | F(1)d! =[Ix(t)dt}' +[Iy(t)dtJj +[Iz(t)dth

a

Example — 3 : Evaluate

1 2
(@) [(€i+e j+2tk)dt () [llti+20]]|dt
2 0
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Solution :

1
(a) J‘(ehi +e'j+2tk)dt
0

t 1
_ U&‘m}n“a‘m} j+“2t dt}k :%} i-'] j+ ] k
0

0 0 0

:(Ee —%)i—(el —1)j+(1—0)k =%(e2 —1)i+(1—é)j+k

(b) [[ti+2%] =\t +4t* =t/1+4¢8

2 2

Jiti+2 jlde=[eV1+4€dt  [pyc 42 =h .. 8tdt=dn]

0 0
16 16

=1J‘«/1+h dh:l.z(uh)“} =i[(17)“—1] _117-1
83 83 o 12 12

Properties of definite integral of vector valued function

If r(t), r (t) and r(t) be vector-valued function in R* or R’ on the interval [, b] and k be a
scalar, then

@ [J(kr)de=k[rdt ) [[r@®=nOF= [r(dt= [r (0)dt

b b b
(c) J.(Clrl(t) +6,n(t))dt :Cl_[”l(t)dt +c2.|.r2(t) dt, where ¢, and c, are constants.

Proof : (a) Let R(t) be differentiable vector valued function such that R'(t) = r(t)
. (KR)'(t) = k(1)

jkr(t)dt = (kR)(t)]Z =kR(b)-kR(a) =k[R(b)-R(a)] =k R(1)] = kjr(t)dt
Praoof of (b) and (c¢) are left as an exercise : a
Example — 4 : Find y(t) given
@ y'(t)=2ti+3t%,y(0)=i-2j (b) y'(t)=i+e'j,y(0)=2i,y'(0)=]

Solution : (a) y(t) = Iy’(t)dt =I(2t i+3t°))dt = 2 + tj+c
where c¢ is a vector constant of integration.
To find ¢, putt=10
~y(0)=0i+0j+c=c
But, y(0)=i—-2i = c=i-2j
se=i-2j
Hence,y t) =i+ j+i-2j=t+)i+ (-2)]
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(b) Given y”(t)=i+e'j

Y= Iy”(t) dt = I(i +e'j)dt =ti+ e j+ b, for constant vector b

Ly (0)=0i+e’j+b=j+b

But, y'(0)=j

SLj+tb=j=b=0

So, y'(t)=ti+e'j

.y .

Lyt = Iy’(t) dt = I[t i+ (e‘]]dt = ?1 +ej+ ¢, for constant vector ¢

~y(0)=0i+e’j+c =j+c

But, y (0)=2i

2i=jtce=>c=2i-]j

Hence,

2 L[t . .
y(t)=?i+etj+(2i—J) = (?+ 2} +(e' =1)j
Illustrative Examples
Example —1:If ¥ = t%i — 4 + (2t + 1)k and § = (2t - 8)i + j -tk find
d . . d . . d . _
@ L F+5) @) (F5) @ (Fx5)
Solution : Given T = tzf—t}+(2t+1)12 , 8= (2t—8)§+3— tk

L +8) = (0T G (20 )R) + (2087 + - k)

@ 4 dt
d/on dya d ~ d »odygy dyn
:E( 1)—E(tj)+a(2t+l)k+a(2t—8)l+a(‘])—a(tk)
:2&—3+21§+2§+0—1§:(2t+2)f—3+12:2(t+1)i—3+12
d .o _dF) . - dE)

(b) a(r-s)— . S+T m

- e fr i e i)

= (26 - J+ 2Kk} (20— 8)i + -t} + (12 - G+ (20 + 1K) 20 - k)

=42 —16t— 1-2t+ 2 -2t — 1 =6t - 20t -2
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i(f><_s')—$><_s'—i-r><E
© g dt dt

= (260 = j+2K) x (2 - 8)i + j— the) + (%1 - -+ (2t + 1)kj) x (20 - k)

21 Jl 1; =i(t-2)— (20> - 4t+16)+ k(2t + 2t -8)
t - A ~ ~

_ T )
(2t-8) 1 —t = (t-2)i+ (20 +4t-16) + k(41— 8)
A =i(t) - j(-* - 4t-2) + k(2r)
2 -t (2t+1) L R
s 0 -1 = ti+ (€ +4t+2)+k(21)

= (t=2)i + (27 + 4t=16)j+ (4t = 8)k + ti + (4t + > +2)j+ 2tk

(t=2+1)0 +(367 +8t —14)] + (41 -8+ 20 )k

= (2t=2)i +(3t* + 8t - 14)j+ (6t - 8)k
Example — 2 : A particle moves so that its position vector is given by . = cos wt i + sin wt j where
w is a constant. Show that
(@) velocity ', isperpendicular

- - .
(b) , x  is a constant vector

(¢c) acceleration g is directed towards the origin and has magnitude proportional to the
distance from the origin.

Solution : 7=coswti+sinwtj .. (D)
d—)
r . . .
v="""=—wsin wti + wcoswutj ..(2)
dt
s

a= =+ w? cos wti—w?sinwtj ... 3
t
(a) From (1) and (2) we have,
V.7 =—wsinwt cos wt +w cos wt sin wt =0

— v is perpendicular to
i ik
xv=| coswt  sinwt 0] =i(0—0)—j(0 - 0) + kw (cos? wt + sin® wt)

—wsinwt wcoswt 0

N
7

(b)

- . .
x v =w k, which is a constant vector.
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(¢) We have from (3)

- 2 . . . 2>
a=-w (COSWZZ+SZI’! wt ])Z—W r

= 22 2 2 ) 2
|a|=‘—w rl=w \/cos wt + sin” wt =w

We know that if 7/ = 0p where O is the origin and P is any point on the curve. This shows that
the acceleration is directed towards the origin.

- - .
Also we have |@|=w?| 7| where w? is a constant.

. |3|@|7| and |7| is the distance of the point P from O .
Thus the magnitude of the acceleration is proportional to the distance from the origin.

d°|_drd’r
Example — 3 : Evaluate (i) dt_z "E dt2

d|. df d°t
Solution :  First we can find '3/ I ey

Ldf dr d%F | [ d%F d%F L dF &7
=l |||+

| dt dt dt’ dr* dt* i dr’

[ dr dr d2* dz” d’t| [ df d3 d’t _dr d°f
=|— —+T | —Xx— [+|TXx— =0-—+1-0+|T-— —
_dt dt | de? de  dt? de? dt?

[ dr dF
=|Tr— —
dt dt’

@[] _af,a o) [a o a'f] [ 0] oo at
Again 42 P g g2 | de| de de dt dt e | | de de dt dt*
[dr dr} &F A d3” _ o |dF diF
= —+T +1X X
dt  dt] dt’ dt dt dt  dt?
d’r &’ d3 L dr dfF (L dz* d°t) (. dr d*F
=0-—+|T- +|T-—x T — || T —x—
dt? di? dt dt dt* de? dt3 dt  de?
&°F d&F dr d*F
= + i i
{ de? dt} { dt dt:| [FEv]elriv]

di _ d’F
(ii)  Find the first and 2nd order derivatives o Fx ar dt’

2z _ d%r\dr (. df) d°’f
Solution : We have 7 x ﬁ><a’ "= r-—zr —r—(r-—rj'—r
dt d dt

dr’ de ) dt*
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d|. (dr d% dt (df d°f _ (d* d%F _ (df dF
=—|IX|—X—F ||=| =X X ||T|TX| = X7 || T TX| —*X—3
dt dt ~ dt dt "\ dt dt de?  dt dt ~ dt

a (a8 a% )| . L (dE @3
=|——X|——X— +[r><0]+ [X|—X—r"
dt dt dt dt dt

a (a8 @) [ (& & . .
=| — —_— —_ + —_ —_ N = = . = iy
S o () [ 7)
N d_2 }_’:X d_;:xd_Z’_; —i i FX d_;:xdzf

oW dt  dt* dt| dt dt  dt?

(i lex(r7)
IO B RO R e

:%x(?x.r;)+0+'f><('f><.?")+?x(?x?)+?x(.'r:><;f)+f><[.'r:>< T ]

3 (x z - e O T = =3
:rx(r><r)+2r><r><r+r><(r><r)+r>< Ix r J

Example — 4 : A particle moves along the curve C:
x=F—4t,y =¢ +4t, ;=8¢ — 3¢ where tdenotes time. Findthe components of its
acceleration at t = 2 along the tangent and normal.

Solution : 7 = (£ —4t)i + (2 +4t) j + (8 - 3t) k

S dr . :
V:?:(3t2*4)1+(2t+4).]+(16t79t2)k
N

@ =" =62+ (16- 180 k

7~ N

:J =8i+8j—4k=: (say)
t=2

(;{) = 12i +2/ - 20k = 4 (say)
=2

Since the velocity is along the tangent to the curve the component of acceleration along the
tangent is given by

> A A - -
A-n where n=y /|y
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e, (12i4+2)-20k). S84k L ge16,50)= 122
12

NJ6d+64+16 12

Also the component of acceleration along the normal is given by | Z — (resolved part of Z
along the tangent) |

:‘(12i+2j—20k)—%(8i+8j—4k) :‘(12i+2j—20k)—%(2i+2j—k)

\/42 44) V2628

= =17
3

=‘;( —26j - 44k)

. components of acceleranon along the tangent and normal are respectively 16 and 17.
Example — 5 : A particle moves along the curve x =2,y = — 4t, 7 =3t — 5, where ‘t’ denotes time.
Find it’s velocity and acceleration at time t = 1 also find components of velocity and

acceleration at time t = 1, in the direction of [ — 3] + 3 k.
Solution. The position vector of the particle at any time ‘t’ is given by
i A~ N ~
r =2t%1 + (2 —4t)j+ (3t -5k
The velocity ‘v’ is given by

ar _d (2t P+ -4)] +(3t—5)1€) =411 +(2t—4)]+ 3k

V=

dr - dt
> dv dry, .- An roA
=—=—|\4ti+(2t—-4)j+3k| =41 +2]j
T dtﬂi (21-4)+34 !

2 N N N - d\_; S A -
[d—r} =4 —2j+3k=V, [—} =4i+2j=4
dtzl dt t=1

The unit vector in the direction i — 3 + 2k is given by
ﬁ_i—3j+2k _i=3j+2k
VI+9+4 J14

The required components of velocity and acceleration are respectively 17 n and 2 n.
2 A . . i-3j+2k 4+6+6 16
Ven=(4i-2j+3k)- = =
=23 — =%
. oo 1=3j+2k 4-6+0 2
=(4i+2j =
i) e T

Thus the required components of velocity and acceleration are 16/ J14 and —2/ Ji4

L

respectively.
Example — 6: Find the tangent vector to the curve whose parametric representation is x =cos t, y =
sint, z=t,—n <t <7 Hence, find the unit tangent vector.

Solution.  The position vector of a point on the curve =7(t)=cost i+sint j+tk . Therefore, the

r . 2 n ~
tangent vector is e —sinti+costj+k,
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We have

%‘:«/sinzt+cos2t+1:\6

(df) [—sint i+cost j+ IQJ

Hence the unit tangent vector dai

V2
- A . i d’F| | dFd°F A7
Example -7 : If ¥ = acosti + asingj + at tanok , find [ o> 7| 0705 |

Solution : 7 = g costi +asint] + at tanok
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3.14 : Unit tangent vector to the curve r = f(s)
Let E and (3 be any two neighbouring points

- - -
r,

on the curve AB with p.v. r+dr

respectively w.r.t. fixed point origin ‘O’. A is
fixed point on the curve from where parametric
value of arc length ‘s’ is measured.

Let sand s + 3s be corresponding parametric
value for pt. ‘P’ and ‘Q’ respectively.

(fig. 3.16)
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—— 1is vector in the direction of §r .
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When Q approaches to P through curve.
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dr . .
= d_ 1S unit vector.
S
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(ii_r is vector whose direction is limiting direction of 81 as 8s — 0.
s

The limiting direction of 87 as 8s — 0 is tangent to curve at P.

Let t be the unit tangent at P.
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(" dash denotes derivative w.r.t.s)

Equation of tangent : .
Let R be any point on the tangent line at P whose position vector is R w.r.t. fixed point ‘O’.

(fig. 3.17)

unit tangent to the curve at P.
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(Fig. 3.17)
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PR is along the direction of t .
> - "
~R-1=ct
- > .
.| R=r+ct | Where ‘c’ is some scalar.

Equation of curve : It is locus of a point whose Cartesian co- Q
ordinate i.e., X, y, z. P.v. of any point with some fixed point is
a function of single variable parameter ‘u’ is called space curve. T
(fig. 3.18) O P(x,y, z)

g A~ A~ A~

r =xi+yj+zk
Where x=f(u),y=/f(w),z=f,(u) A S
Let A be a fixed point on the curve from where arc length is Fig. 3.18

measured to corresponding point.



