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Vector Integration

4.1 : Introduction

The concept of a line integral is a simple and natural generalization of the concept of a definite

b
integral. If(X)dx

In the line integral we do not integrate the integrand along x-axis froma to b; instead, we integrate

along a curve in place or in space and the integrand is a function defined at the points of that curve. We
can define a line integral in a way similar to that of a definite integral.

1.

Line Integrals: Any integral which is to be evaluated along a curve is called a line integral.

Let 7 =7 (t) be the equation of a curve. If ¢ and A are the scalar and vector fields respectively
and dr is the vector increment of length, then we may encounter the integrals.

Odr ... (1) A-dr ... ) LA xdr . (3)

c c

each of which being known as line integral along the curve C that may be open or closed. The
results of integration are respectively a vector, a scalar and a vector.

To compute any of the integrals, the method of attack will be to reduce the vector integrals, into
scalar integrals with which one is assumed to be familiar.

As ¢ is a scalar function and d7 = idx + }dy + kdz , integral (1) immediately reduces to

J.C(I)dr = fJ.C(I)(x,y,z)dx + ]A'J.C(I)(x,y,z)dy + IQJ.C(I)(x,y,z)dZ ............. (4)

The three integrals on R.H.S. of (4) are ordinary scalar integrals and to avoid complications we
shall assume that they are Riemann integrals. The integrals with respect to x cannot be evaluated
unless y and z are known in terms of x and similarly for the integrals with respect to y and z. This
simply means that the path of integration C must be specified. Unless the integrand has special
properties that lead the integral to depend only on the value of end points, the value will depend
upon the particular choice of C.

The line integrals (2) and (3) may be interpreted in the similar fashion and like integral (1) they
are dependent, in general, on the choice of the path.
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Line integral (2) is most commonly used in vector analysis, it is called the line integral of the
tangential component of vector A along the curve C. If A (vector function of position) represents

— —
the force F acting on the particle, then the line integral i.e., J. F - dr represents the work done
c

by the force.

Scalar line Integrals :
Thus, the scalar line integral of a vector function ;‘ along a curve C from 4 to B is definite

N
integral of the scalar resolute of F in the direction of the tangent to the curve.

2 g - e . .
Let a continuous curve C in space and F = f|i + f,j + f;k be a vector point function.

F=xi+y+ zk then the line integral is defined as
B
J? -dr or J? dr
C A

be position vector of a point (x, y, z) on the curve. If S denotes the arc. length of the curve C from

ar
a fixed point on it to the point (x, y, z), then T t is unit vector along the tangent to the curve at the
s

, L @ L dF
point 7 . The component of the vector £ along the tangent is f T The integral of g = along C

B - B
from the point A to B, written as I (13 ﬂj ds =| F.dr = I F.dF is called the line integral or move
4 c

4 ds B

particularly the tangent line integral (or scalar integral) of g along C.
Now

jﬁdf:j(fl?+Jgj+ﬁl€)-(dxf+dyj+dzl€)
C C

= J.( fidx+ fody + fydz), which is an ordinary integration.
C A

Other type of line integral J.]—J)'x dr which gives a vector. When C is a closed curve then the line
c

N
integral is written as EfF -dr .

C
Work done by a force :

Suppose a force ; acts upon a particle. Let the particle be displaced along a given path C, in

7
space. If 7 denotes the position vector of a point on C, then s is a unit vector along the tangent of the
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- dr -
force F along the tangent to Cis F. s Therefore the work done by F along C is

(1? d—r)ds ie. (17*. df)
ds

The total work W done by ; in this displacement along C is given by the line integral
-
W= Far,
c
the integration being taken in the sense of the displacement.

N
Now if F represents force acting on a particle moving from A to B (displacement), then the line

B
5
integral represents work done i.e., W.D.= J F.dr.
A

B —>
Theorem — 1 :The necessary and sufficient condition that the line integral JA F-dr be indepedent

of the path joining A and B is that F is the gradient of some scalar function ¢.

N
Alt : The necessary and sufficient condition that J-F-d? be indepedent of the path is that
C

N
curl F vanishes identically.
Proof : The condition is sufficient.

Let ;: be the gradient of a scalar function ¢. i.e., ;: =V-

The F-dF =vg-di =| 1284 300, ;00
Oox 0.

> —ZJ (Fdx + jdy + kdz)

= @dx +@dy +@dz =d¢
0x oy Oz
B> B
L F.dF = qu) —[6]” = 6(B) - d(4).
Here the value ¢(B) — ¢(A) depends only on the terminal values 4 and B and not on the path of
the curve. Hence the condition is sufficient.

B —
The condition in necessary. Now let us suppose that P F.dr depends only on the end values 4

and B and not on the path of integration.
B— B
L F.dr = ¢(B)—¢(4), for some function, say ¢ = [¢]j = L dé .

So. Fr-dr =d¢ =@dx+@dy +@dz
’ Ox oy Oz

Ox oy Oz

Since this is true for all curves between 4 and B, F' = V¢ . Hence the condition is necessary.

_ ({@+j@+1€@)-({dx+jdy+1€dz)= Vo.dF
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B—

Theorem — 2 : The necessary and sufficient condition that the line integral ) F-dr beindepedent

N
of the path joining A and B in a given region is that J-F dr - 0, for all closed paths in
c
the region.
Proof : The condition is necessary.

B—
Firstly suppose that J‘ F-dr is independent of the path joining 4 and B. Let AP, BP, A be a
4

closed curve in the region as shown in the (Fig 4.2). A p
2
Then §F.di=[  F.dr
ARBP,A P
c 1
- - - -
= IF.dF+ J.F.dF: J.F.dF— IF.dF:O o
APB BPA APB AP,B Fig 4.2

since the integral from 4 to B along the path through P, is the same as the integral from 4 to
B along the path through P, by the hypothesis.

B— —
Hence if L F.dr is independent of the path, ¢ F.dF =0 for all closed paths in the region. Thus
the condition is necessary.

N
The condition is sufficient. Let ng .dr =0, for all closed paths in the given region. Let 4P B and

AP B be two paths joining 4 ang B. Then AP BP A is a closed path.
o [Far=0 ie. [Far+ [Far=0
APBP; 4 AP,B BP A
- - - -
ie, [Fdi- [Fdr=0ie, [Fdi= [FdF
AP.B AP,B AP.B AP,B

B—

5

Hence if §F .dr =0 for all closed paths in the region, then p F.dr is independent of the path

joining 4 and B.

Corollary : If J-F-d? is independent of the path of integration then J-F-d? along any closed
C C

path is zero.
Circulation : If C is a simple closed curve (i.e., a curve which does not intersect itself anywhere),

then the tangent line integral of ;: around C is called the circulation of F' about C and is written as
§ F.dr = 3§(F1 dx+Fady+ Fs dz) ‘
c c

Note : If ? represents the velocity of a fluid particle then the §F dr is called the circulating of

C
- -
F around C. When the circulation is zero in a region, then F is said to be irrotational in that region.
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Note — 1:If the scalar point is replaced by vector products the corresponding line integral is J-I:)x dr
C
which is a vector.

Note —2: If the vector function %) is replaced by a scalar function ¢, then the corresponding line integral

is denoted as Jd)df which is a vector.
C

Note-3 : If f(x,y,z):flf+fzj+f3f< and T =xi + yj + 7k then

oo (of dx . dy . dz
lp&_L(ﬁdfjﬂk+ﬁm)&

Note 4 : If C is a closed curve, then the integral sign j is replaced by Ef
C C

In all the above line integrals, it is assumed that the path of integration is
piecewise smooth. For a line integral over a closed path C, the symbol

f#;{instead Of_[ J is sometimes used in the literature. (fig 4.3)
C C
From the definition of line integral, it follows that the following properties are valid for line

integrals :

(a) Jk wds = kj wds (k constant)
C C

(b) J(f+g)ds=des+Jgds
c c c
(orientation of C is the same in all the three integrals.)

(c) J.w ds = J.w ds,+J.w ds , where the path C is subdivided into two arcs C, and C,, which
c G G
have the same orientation as C.

Note that if the sense of integration along a curve C is reversed, the value of the line integral
is multiplied by —1.

The question is now arises is — How is a line integral evaluated ? We shall now answer this
question.

Additivity :
Line integrals have the useful property that if a curve C is made by joining a finite number
of curves C, C, ......... C, end to end, then the integral of a function over C is the sum of the

integrals over the curve that make it up.

Jﬁh:Jﬁb+Jﬁh+ ........ +Jﬁb
c G

G
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4.2 : Mass and Moment Calculations

Mass and moment formulas for coil springs, thin rods and wires lying along a smooth curve C in
space. The distribution is described by a continuous density function 3(x, y, z) (mass per unit length.)

Mass = M :j B(x,y,z)ds (6 = B(x,y,z) = density).
c
First moments about the co-ordinate planes :
M, = J-xﬁds, M, = J yods M, = JzBds
c c ’ c
Co-ordinates of the centre of mass :

X = MyZ/M,)_/: M, /M,z= Mxy/M,
Moments of Inertia about axes and other lines :
I, :J(yz +2%)dds | 1, :J(zz +x?) 8ds

c c
I, = J-(xz +y2)6ds I, = J-rz dds

c ’ c
r (x, y, z) = distance from the point (x, y, z) to the line L.
Radius of gyration about a line L, R, =4/, /M .

Illustration : Finding Mass, Centre of Mass moment of inertia, radius of gyration of a coil spring
lies along the helix r(t)= (cost)i + (sint)j + tk , 0 <t <27z The spring’s density is a

constant 6= 1.
Solution : The symmetries involved, the cetntre of mass lies at the point (0, 0, 7) on z-axis.

S ORORO)
¢ first fin i i i

:\/(—sint)2 +(c0st)2 +1=+2
M= J.Sds - .|-027t 12dt = ﬁ[{ﬂiﬁ =2{2n

Helix

I, = J-(xz + yz)Sds = J-Ozﬁ(cos2 t + sin® t)l.\/idt = ﬁj-ozc;t = ﬁﬂitiﬂ? =22n

Helix

22
R,=\I.]M = N

2
4.3 : Work Done by a Force over a Curve in Space

Supppose that the vector field F = M(x,,z)i + N(x,,2)] + P(x,»,z)k represents a force

through out a region in space and that
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F(t) = g(t)i + h(2)] + k(0)k a<t<h
is a smooth curve in the region. Then the integral of E.T. the scalar component of ; in the
direction of the curves unit tangent vector over the curve is called the work done by ; over the curve

from a to b. To evaluate the work integral along a smooth curve r(¢), takes following steps.

5
— Evaluate F on the curve as a function of parameter ¢.

it &
—> 1n dl'

- dr
- IntegralF.E fromt=atot=b.

Six different ways to write the work integrals :

J J F dr (Compact differential form)

t=a

dr
J. Far (Parameter ¢ and velocity vector —)

o dg dhdk
= L (M ot N P pP— 0 )df (Component function)

j(Mﬂ +NY L p dz)dt
A\ ar T dr

b
- j Mdx + Ndy + Pd=

Flow Integrals and circulation for velocity fields :
If r(¢) is a smooth curve in the domain of continuous velocity field F the flow along the curve ¢

b
=atot=bis flow :IF,Tds.

The integral in this case is called a flow integral. If the curve is a closed loop, the flow is called
the circulation around the curve.

4.4 : Flux Across a Plane Curve

If C is a smooth closed curve in the domain of a continuously vector field
i ~ ~
F=M(x,y)i +N(x,y); in the plane and if 7 is the outward. Pointing unit normal vector on

C, the flux of F across C is
Flux of F across C = JF .nds
C

If F = M(x,y)i +N(x,y)J , then Fi = M(x, y)d——N(x y)—
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Hence, J;’na@ = J( Q—Nﬁj
v v ds ds

§ Mdy — Ndx
C

The integral can be evaluated from any smooth parametrization x = g(¢), y = h(f) a < t < b, that
traces ‘C” centre clockwise exactly once.

Illustrative Examples

Example — 1 : A Fluid’s velocity field is F = xi + zj + yk. Find the circulation along the helix
r(t) = costi + sintj +th,0<t<m2.

5
Solution : Evaluate F on the curve,

> . A oA A A A dr
F=xi+x +yk =(cost)i +t +(sint)k and then find o

7 . SN
— =(—sint)i + t)j+k
0 (—sint)i +(cost)
, > dF
We integrate F.E fromt=0to r=m/2.

F% ~(cost)(-sini) + (1)(cos) + sin (1)
=_—sint.cost+ t cost+sint

t=b( = n/2 . .
Flow = (F.%)dt =J0 (—sint.cost +tcost +sint)dt

t=a

) /2
—[ 95 fsine =(0+£)—G+o)=£—l
2 ) 2) (2 2 2

Example-2 : Find the circulation of the field F=(x—y)t +x} around the circle

r(t) = (cost)i + (sint)j, 0 St <27
Solution : First we evaluate

; = (x - y)f + xj’ = (cost —sin I)lA + (cost)f
7’; = (—sin?)i +(cos?);

> d;: . 2 2
F.7 = —sint.cost +(s1n t+cos t) =1 — sint. cost
t

2n d 2
Circulation = J;) F.;’; dt = J;)(l —sint.cos t)dt

. 2[ 2n
] s
2
0
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Example — 3 : Find the flux of 77 = ( xX— y){ + x}' across the circle X’ + y*> = 1, in the xy plane.

Solution : The parameterization 7(¢) = (cos?)i +(sin¢);j, 0 <t<2n

M = x — y = cost — sint dy =d (sinft) = cos dt
N=x dx =d (cost) = —sint dt,
we find

2n
Flux = J-Mdy — Ndx = J- (cos2 t —sintcost + sintcost)dt
0
c

2n

21 2n /
:J cosztdt:J HC—OSZt dt = £+sznt =T.
0 0 2 2 4

0

The flux of F across the circle is 7.

2
Example — 4 : Evaluate J.<x2 +y°+ zz) ds , where C is the arc of circular helix.
c

7(t)=cost i +sint j+ 3tk fromA(1,0,0)t0 B(1,0,2m).
Solution : Here 7(t)=cost i +sint j+31¢ k,

. .o A o~ dr
r(t)z—s1nti+costj+3k=;:

Now %=«/iﬂ-f =x/sin2t+coszt+9=\/w=\/|7;\2

On C, (x* + y* + z%)? = [cos’t + sin’t + 9t?]* = (1 + 9t?)?
Also A (1,0,0)and B (1, 0, 2 ) on C correspond to 0 <t <2 7.

Thus, we have f(x2 +y° +22)2 = Jjn(l +9t2)2 -%dt

C

. 5 3 2n

= V10| (148164 +182)dr =10| 1+ 811185 | = V10| 2+ 6(2)° + 2L (2m)’
0 5 3 o 5

- 506400

Example — 5 : Evaluate the line integral sz ydx + (x - z)dy +xyz dz}l where C is the arc of the
C
parabolay = x’ in the plane 7 = 2 from A (0, 0, 2) to B (1, 1, 2).
Solution : Since on C, y = x? and z = 2 (constant),
~.onC, dy=2xdx and dz=0.

It follows that on C, the integral of the last term in the given integrand is zero.
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Thus, J.ﬂ:xzydx + (x —z)dy +xyz dz] = jol[xz xldx + (x - 2) -2x dx;ﬂ

C B(1,1,2)
oy — 2 —
(vy=x*andz=2on C? A0,0.2) ;
| 5 3 2
=j(x4+2x2—4x)dx=x—+2x——4x— /
0 5 3 21, X
1 2 17
=—+——-2=-— y
53 15 (ig44) 0
Let us now take up an example in which we
consider integration of a line integral over )
Fig 4.4

different paths with the same end points. X
Example — 6 : Let C be the line segment from A (0, 0) to B (1, 1) and let f (x, y) =x + )~

Evaluate J f(x, y) ds when
c

(a) Cis characterisedbyx=t,y=t, 0 <t <I.

(b) C has parametric representation x =sint,y =sint, 0 <t <

w3

Solution : (a) Ifx=t,y=t,0<t<1, then

Jrtta= (o)) o[£ a

6

2

1
=f(t+t2)-\/1-+1dt=x/5 A
0 2

t
— + —|

0

i
b) Ifx=sint, y=sint, 0 <¢< —, then
Y 2

l f(x,y)ds = j(x +y?). [%)2 +[%)2dt

C

T 3
= J-Z (sint +sin? t)\/cos2 t+cos’tdt = ﬁjz (sint cost +sin’ t cost)dt
0 0

2 s

6

-

sin’t sin’¢
+ R
2 3

0
4.5 : Application of Line Integrals

In this example, the integrands and the end points of the paths of integration are the same, but the
values of the line integrals are different. This illustrates the important fact that.

In general, the values of a line integral of a given function depends not only on the end points but
also on the geometric shape of the path of integrals are of the form

d d d.
f (x,y,Z)—dx fy.2) 2 or flx,y,2)
s ds ds
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4.6:

dx d z
where d—,d—yand s are the derivatives of the functions occuring in the parametric
s ds s

representation of the path of integration. Then we simply write
dx
Jf(x,y,z)—ds = J.f(x,y,z) dx
c ds c

and similar expressions in the other two cases.
For sums of these types of integrals along the same path C, we adopt the notation

jfdx+jgdy+jh dz=j(fdx+gdy+h d)
c c c c

In many cases, the functions f, g, h are components f,, f,, 1, of a vector function
[=fi+fo)+ fik

Then f,dx + f,dy + f,dz = ( 1, ﬁ + £, Q +f %jds , the expression in parenthesis on the right

ds ds ds

being the dot product of the vector f'and the unit tangent vector.

dr _dip dvs di

i j+—k,
ds ds ds ds

where r (s) represents the path of the integration of the line integral. Therefore,

l(ﬁdxﬂgdyﬂgdz):lf%ds =£f.d;

where dF = dxi + dyj + dzk -
Now if f represents a force whose point of application moves along a curve

F(t)=x(t)i + y(t)] +=2()k, a<t<b

from a point A to a point B in space, then .[ f-dr represents the work done by the force f'in
c

moving a particle from point A to point B along the curve C.

.. . dr )
The representation in equation i.e., J- f ._d ds emphasises the fact that the work done by the
s
C

force f'is the value of the line integral along the curve of the tangential component of the force
field f.

Path Independence — Conservative Fields

Let 7? be a vector field with components F, F, F, and F , F, F, be continuous throughout some
connected region D.

Consider two point A and B in D. Suppose that C is any piecewise smooth curve joining A and B
givenbyx=x (1), y=y (1), z=z (1), t, <t<t,.
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Region D is connected if any two points of D can be joined by a broken line of finitely many
linear segments all of which belong to D.

If there exists a differentiable function f'such that

- ~ 0 ~ 0,
F=Vf= ﬁjjc + ]% +k 6f , then along C, 1= f[x(¢), y(¢), z(¢)] is a function of # and

P YA LE i gl ) g o
ot oOxoOt 0Oyot 0Ozot dt dt dt

Y

5 dF
We thus have F-dr =Vf- g7 =Vf-zdt =

Now integrating ;‘ dr along C from A to B, we get

l F-dF = ;f% v =F = tjd[f {x(0)7(1).2(0)}]

= S} ) = (), 70, 201~ F1x(0), 70, (0]

B
= [F.di = [vfdF = £(B)- /(4)
c 4
The value of the integral [f (B) — f (A)] does not depend on the path C at all. This result is

analogue of the First Fundamental Theorem of Integral Calculus, viz.,

b

[ 1 ()x = £(8)- 1(a)

a

The only difference is that we have Vf- g7 inplace of f” (x) dx. This analogy suggests that if we
define a function f by the rule.

(x"."2') 2,
4 4 4 — F. d_'
[reeyz)=] G
then it will also be true that V/'= 77
This result Vf= ;‘ is indeed true when the right-hand side of relation is path-independent. Thus

B
a necessary and sufficient condition for the integral LF -dr to be independent of the path joining

the points A and B in some connected region D is that there exists a differentiable function of
such that

Fevi=iL ;L I
ox oy oz
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throughout D, where components f,, £, f; of vector field F are continuous throughout D and then
B -

[F-a7 = f(B)- f(4).

A

When F is a force such that the work-integral from A to B is the same for all paths, the field is
said to be conservative. Using the above result, we can say that : A force field F is conservative
if and only if it is a gradient field, i.e., ' = Vf', for some differentiable function f.
A function f'(x, y, z) that has the property that it’s gradient gives the force vector F is called a
potential function. Sometimes a minus sign is introduced, e.g., the electric intensity of a field is
the negative of the potential gradient in the field.
Let us consider the following example.

Exact Differential Form :
Any expression M(x, y, z) dx + N(x, y, z)dy + P(x, y, z) dz is a differential form. A differential form
is exact if Mdx + Ndy + Pdz = Zldx + %dy + gdz =df for some scalar function f through

X z

out D.

Component Test for Exactness of Mdx + Ndy + Pdz :
The differential form Mdx + Ndy + Pdz is exact if and only if

oP ON oM op ON _oM
—=—,—=—"an =
oy 0z 0z Ox ox Oy
This is equivalent to saying that the field = M7 + Nj + Pk is conservative.

Illustrative Examples

Example — 1 : Find the potential for conservative Fields and component test for conservative fields.

Let F = M(x,y,2)i + N(x,,2)j + P(x,,2)k be afieldwhose component functions have

continuous first partial derivatives. Then ;“ is conservative if and only if
@ _oN oM _op N _oM
oy 07 07 ox and ox oy’
i ~ ~ A~
Solution : Given f = M(x,y,z)i + N(x,y,z)j + P(x,y,z)k
S
0x oy Oz
o _i(i)zﬁz_fzaz_f:i{ai}a_f‘f

5 - oy\ Oz 0y0z 0z0y Oz\ Oy oz

The others equation (2) are proved similarly.

Once we know that F'is conservative, we want to find a potential function for F. i.e. Vf =F.
g: M’:g:N’—g:P‘

0x oy oz
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Example — 2 : Show that 2xydx + (x* — 72) dy — 2yzdz is exact and evaluate the integral
(1,2,3) PR
L0,0,0)2xydx + (x -z )dy —2yzdz
Solution : We let M = 2xy, N = x* — 22, P=—2yz and apply the test for exactness :
oP ON oM OP ON oM
—_—= Z:—,—:O:— —:zx:—
oy 0z Oz Ox > Ox oy
The equalities tells us 2xydx + (x> — z*)dy — 2yz dz is exact so
2xydx + (xX* —22) dy —2yz dz = df
for some function f, and the integral’s value is (1, 2, 3) — £ (0, 0, 0)

o

M==—=2
ox Xy (1)
S (22

N = —= —_
o= =) 2)
o

= —= —2
P yz .(3)
From the first equation (1) and integrate w.r.t. x we get
Sy, 2)=xy+g( 2) (4

Again differentiating (4) w.r:t. y partially and equalising (2)
of _ 2 0g _ 2 2
oy oy

0
= a—i =z’ g(y) = —Zzy + h(z) -(5)

Hence y is a function of z

Sy 2)=xy =2 + h(z) ..(6)
Again differentiating (6) partially w.r.t. z. and equalising with (3)

of Oh
—=2yz4+—=-2
0z - 0z -

% =0= h(z) =c
Oz
So h must be a constant
Therefore, f (x, y, z) = x>y —yz2 + ¢
The value of the integral
f(1,2,3)-f(0,0,0)=2-2(9)+c—c
=2-18=-16.
Example — 3 : Finding a potential function & show that

~

F= (excosy + yz)i + (xz - exsiny) f + (xy + z)lg is conservative.

Solution : M = e*cosy +yz, N =xz—e'siny, P=xy + z.
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a—sz:a—N oM _ . _oP oN ..
oy oz oz Y ex g =€ sSimytz=—— (1)

y
Once we know to find a conservative we usually want to find a potential function for F on

solving vf = P

of f v of
M=-"L=¢"cosy+yz N=—=xz—¢€ siny P=-"=xy+z
o y+yz, oy , pe Y .(2)
We integrate (1) with respect to x, treating y, z constant.
S (X, y, 2) = e cosy + xyz + g(y, 2) .(3)
Again differentiating partially (3) w.r.t. y and compare with (2).
g —exsiny+xz+a—g
oy oy
. . 0, . 0
Le., —e'siny +xz + e siny =% 9
oy oy

0
So we get 6_g =0. Therefore, g is a function of z alone.
y

S(x, y,2) =€ cosy + xyz + h(z) (4)
Now again differentiating (4) partially w.r.t. z, we get and compare with (2)
of

——=x +%—x tz=>—=z
0z 4 oz 4 oz -
2

So h(z)=—+C.
2
2
Hence f(x,y.z)=¢" cosy+xyz+%+c

- A A A
Example — 4 : Show that F = (ny -7 )i + (xz + Zyz) Jj+ ( y' - Zu)k is conservative and find a
potential function for it.
Solution : First we have to show that F'is conservative or not clearly M = 2xy — y?, N= x>+ 2yz,

oP ON oM oP
P =y?—2zx and calculate 5 =2y T o 0 ia

The two are unequal. So F' is not conservative.
We find f by integrating the equations

o 2
M:—:2 —
o Xy —z .. (1)
_of
N—a—x +2y ()
P—g:yz—sz ..(3)

oz
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We integrate first equation with respect to x holding y & z are constant

Sy 2)=xy—zx+g( 2)
Again differentiating partially w.r.t. y and equalising with (3) we get

g=x2+a—g:x2+2y
oy oy
og

ie., a—y=2y =gy)=y"tc

SOy 2)=xly—2x+y + h(2)
Again differentiating w.r.t.z and equalising with (3) we get

g=—2zx+%=y2—2zx :%zy

0z 74 z
= h(E) =yz+e
Hence f(x, y, z) =x*y —zx +)y*+ )z + ¢

2

Example — 5 : Find a potential function f for the field E. If F = 2xi + 3yj + 4k .
o

Solution : Here M =—=12x (D)
ox
o
N=< -3
= Q)
P-4 e
z

First integrate M with respect to x, i.e., y & z are constant.

S(xy.2)=x" +g(y.z)

Again differentiating partially w.r.t. y and equalising with (2)
o o 0
T _%_3, % _3
y y

2

= g(y)= 5t h(z) (Intergrating w.r.t.y)

Y

2
fxp,z)=x> +% +h(2)

Again differentiating partially w.r.t.z and equalising with (3) we get

1=0+%=4Z:>%=4Z
oz 0z 0z
hz)=2z"+c¢

2
Hence f'(x, y, z) = x2 £ +c
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Example — 6 : Findthe circulation of ;* round the curve c where ;* = yf + z}' + xk and cisthe circle

xX+y’=1,z=0.

Solution : The required circulation is given by

- A A A A A A
§Fd}7 =§(yl +zj+xk) (dXI +dy]+dzk) :J.ydx—i—zdy—i-xdz :J.ydx asz=0onC.
c c c
The parameteric equation of the curve i is x =cos t, y=sint, and 0 <t < 27
2n
§F -dr = §ydx = Jsint(—sint)dt
C c

0

1°F 1[sin2 T~ 1
=—|(cos2t—-1)dt =— —t| =(=271)—=-—
2J( ) 2[2 l (27)- 5 =
Example — 7 : Find the work done when a foce F = (x* —y* + x) i- (2xy +y) j moves a particle in
the xy — plane from (0, 0) to (1, 1) along the probabola y’ = x. Is the work done
different when the path is the straight liney =x ?

Solution : The parabola y* = x has a parametric representation y = t, x = t*,

From (0, 0) to (1, 1), variation of t is 0 <t < 1.
". Work done along the parabola
= J.;'-df = J.[(xz —y? +x) (2xy+y) ]l dxi +dy] =J{ Xy’ +x (2xy+y)dy]l

C

C

1
(et 2L 2 2 _ lté_lt‘*_lﬂ __2
_.[o[(t —t +t7)-2tdt— (2t ~t+t)dt]l [3 ) 3
We can similarily find the work done when the particle move from (0, 0) to (1,1) along y = x. In

this case also we find that the work done is
(L1)
1, 1, , 1, 1 1 1 5
=|l-x +=x" -2xy" —— +
[3 2 7Y

as obtained earlier. This is because, we notice that

0

(0,0)

15 1, 2 1 5
F=grad| —x"+—x"-2xy" ——
g (3 > VoY

S A

Example — 8 : If l_‘;‘ = M , find work done by E along the upper half of the circle passing
X+
through the points (—1, 0) and (1, 0).

> ; —ydx + xd,
Solution : i;F dr:i[xj;ly j(dxl +dy]) _l J;f:y)gy
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Required workdone
F F,
5 ydx +xdy ydx + xdy :
2+t E x? 4 y? =10 (1,0)
dy —dy _("_dy _(°_dy
:211+ 2+J1 2=f11 2_-'-—11 2
P4yt fley +y +y
_ 2_ﬂitan—l y]o _Hitan—l y]o Fig.4.5
i 1 -1

= 2;(tan71 0—tan' 1) - [tanf1 0- tanfl(—l)M

=20—£—(0—3—") _o| TR p2h g
4 4 4 4] T4

~ ~ bd
Example — 9 : If 7’ = 3xyi — y’j . Evaluate IF -dr , where C is the curve in xy plane y = 2x7 from

(0, 0) to (1, 2).
Solution :Since the integration is performed in the xy-plane (z = 0)

we can take 7 = xi + yf, dr =dxi + dyj
[F-dt = [(37 —5%7)-(axf + dyj) = [ Bayde — y2dy = [3xvdx = [ yay
C C C C

c
To integrate; change st integrand to function of x only with the help of y = 2x%

1 2
F-df = | 3x-2x’dx — | y?dy = x varies from 0 to 1 and y varies from 0 to 2.
y
0

e ;R
.| o2 26 8.3 8_—7
4, 3, 43 2 3 6°
Or Second Method. Take parametric equation of the parabola y = 2x? which is x =t, y = 2t*
- when x =t : dx = dt, when y = 2t% dy = 4t dt

Atthe pt (0,0),x=0, .. t=0

Atthept(1,2),x=1, .. t=1

> dx ,d
J-F‘ dr = £3xydx —ydy = (3xy5 dy

_[6&_162}‘ 6.8 7

)dt_j3 t-262 — 4t At dt J 16t5)dt

4 6
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Note that if the curve is traversed in the opposite sense i.e. from (1, 2) to (0, 0) the value of the

7
integral would s instead of W

Example— 10 : Findthe work done in moving a particle in the force field ;‘ =32+ ( 2x7 — y)} + 7k
along.
(i) the straight line from (0, 0, 0) to (2, 1, 3).
(ii) the curve defined x*> = 4y, 3x* = 8z from x =0 to x = 2.

- A~ A A~ A~ A A~
Solution : Work done I F.-dr = j(3xzi +(2xz—-y)j+ zk) . (idx +jdy + kdz)
C
= J3x2 ~dx +(2xz - y)dy + zdz
C

(1) The equations of the line through (0, 0, 0) to (2, 1, 3) is

x-0 y-0 z-0 X _ y _ z_

220 1-0 3-0% 27173 6w
Sox=2ty=tz=3¢

dx =2dt, dy=dt,dz=3 dt

Whenx=0,t=0, Whenx=2,¢t=1

.. t varies from 0 to 1.

1
Work done = J3(4t2)(2dt) +(12¢% = t)dt + 9edt

=0
1 1 3 2 1
= [ (247 4126 — 149}t =[ (361 + 8¢t = {36t—+ 8t—} —12+4=16
0 0 3 2
(ii) Along the curve x* =4y, 3x* = 8z
For parametric equation of the curve, we take x =t ..y = T

tdt 9¢?
sodx = dt, dy 27, dz 2?(/#.

.. t varies from O to 2.

0
2
[ 3 2 3 .Y 9
. Work done :J(3t2)dt+[—t4 —t—JidtJr(—ﬁ)(—tz)dt
) 4 4 |2 s A8



