
Vector Integration

4.1 : Introduction

The concept of a line integral is a simple and natural generalization of the concept of a definite

integral. f x dx
a

b b gz
In the line integral we do not integrate the integrand along x-axis from a to b; instead, we integrate

along a curve in place or in space and the integrand is a function defined at the points of that curve. We
can define a line integral in a way similar to that of a definite integral.

1. Line Integrals: Any integral which is to be evaluated along a curve is called a line integral.

Let r r
 

 (t) be the equation of a curve. If  and A are the scalar and vector fields respectively
and dr is the vector increment of length, then we may encounter the integrals.

   dr
C

z ...................(1)                A dr
C
z 

..................(2)        A dr
C
z 

.....(3)

each of which being known as line integral along the curve C that may be open or closed. The
results of integration are respectively a vector, a scalar and a vector.

To compute any of the integrals, the method of attack will be to reduce the vector integrals, into
scalar integrals with which one is assumed to be familiar.

As  is a scalar function and ˆˆ ˆdr idx jdy kdz  


, integral (1) immediately reduces to

   dr i x y z dx j x y z dy k x y z dz
C CCCz zzz   , ,  , ,  , , .............b g b g b g b g4

The three integrals on R.H.S. of (4) are ordinary scalar integrals and to avoid complications we
shall assume that they are Riemann integrals. The integrals with respect to x cannot be evaluated
unless y and z are known in terms of x and similarly for the integrals with respect to y and z. This
simply means that the path of integration C must be specified. Unless the integrand has special
properties that lead the integral to depend only on the value of end points, the value will depend
upon the particular choice of C.

The line integrals (2) and (3) may be interpreted in the similar fashion and like integral (1) they
are dependent, in general, on the choice of the path.

CHAPTER – 4
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Line integral (2) is most commonly used in vector analysis, it is called the line integral of the
tangential component of vector A along the curve C. If A (vector function of position) represents

the force F


 acting on the particle, then the line integral i.e., 
 
F dr

C
z represents the work done

by the force.

Scalar line Integrals :

Thus, the scalar line integral of a vector function F


 along a curve C from A to B is definite

integral of the scalar resolute of F


 in the direction of the tangent to the curve.

Let a continuous curve C in space and F i j k

  f f f1 2 3

  
be a vector point function.

   
r xi yj zk    then the line integral is defined as

 F dr or F dr

C A

B
 z z 
 

be position vector of a point (x, y, z) on the curve. If S denotes the arc. length of the curve C from

a fixed point on it to the point (x, y, z), then 
dr

ds



 = t is unit vector along the tangent to the curve at the

point r
  . The component of the vector F


 along the tangent is F


 
dr

ds



. The integral of F


 
dr

ds



 along C

from the point A to B, written as . .
B B

A A C

dr
F ds F dr F dr

ds

 
  

   
   

is called the line integral or move

particularly the tangent line integral (or scalar integral) of F


 along C.

Now

F dr i j k dxi dyj dzk
C C

z z      
      

f f f1 2 3e j e j   Fig 4.1

  z f f f1 2 3dx dy dz
C

b g , which is an ordinary integration.

Other type of line integral F dr
C



z 
which gives a vector. When C is a closed curve then the line

integral is written as F dr
C



z 
.

Work done by a force :

Suppose a force  F


 acts upon a particle. Let the particle be displaced along a given path C, in

space.  If 

r  denotes the position vector of a point on C, then 

dr

ds



is a unit vector along the tangent of the
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force F


 along the tangent to C is F. 
dr

ds



. Therefore the work done by F


 along C is

F
dr

ds
ds




F
HG
I
KJ


.i.e. F dr



F
HG
I
KJ


The total work W done by F


 in this displacement along C is given by the line integral

W F dr

C

 
z 

,

the integration being taken in the sense of the displacement.

Now if F


represents force acting on a particle moving from A to B (displacement), then the line

integral represents work done i.e., W D F dr

A

B

. . 
z 

.

Theorem – 1 :The necessary and sufficient condition that the line integral F dr
A

B 

z 
be indepedent

of the path joining A and B is that F is the gradient of some scalar function .

Alt : The necessary and sufficient condition that F dr

C



z 
 be indepedent of the path is that

curl F


vanishes identically..
Proof : The condition is sufficient.

Let F


 be the gradient of a scalar function . i.e., F


  .

The F dr dr i
x

j
y

k
z

i dx jdy kdz


    














F
HG

I
KJ   

       e j















x
dx

y
dy

z
dz d

    
z zF dr d B A

A

B

A

B

A

B
.


   b g b g .
Here the value (B) –(A) depends only on the terminal values A and B and not on the path of

the curve. Hence the condition is sufficient.

The condition in necessary. Now let us suppose that F dr
A

B z .


depends only on the end values A

and B and not on the path of integration.

  
z F dr B A

A

B

.


 b g b g , for some function, say     zA

B

A

B

d .

So, F dr d
x

dx
y

dy
z

dz


  















=       .i
x

j
y

k
z

i dx jdy kdz dr














F
HG

I
KJ     e j 

Since this is true for all curves between A and B, F =  . Hence the condition is necessary..
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Theorem – 2 : The necessary and sufficient condition that the line integral F dr
A

B 

z 
 be indepedent

of the path joining A and B in a given region is that F .dr
z 

C

= 0, for all closed paths in

the region.
Proof : The condition is necessary.

Firstly suppose that F dr
A

B 

z 
 is independent of the path joining A and B. Let AP

1
 BP

2
 A be a

closed curve in the region as shown in the (Fig 4.2).

Then F dr F dr
AP BP A

C

 

 zz . .
 

1 2

    
   z z z zF dr F dr F dr F dr

AP B BP A AP B AP B

. . . .
   

1 2 1 2

0

since the integral from A to B along the path through P
1
 is the same as the integral from A to

B along the path through P
2
 by the hypothesis.

Hence if F dr
A

B z .


 is independent of the path, F dr


z .


0  for all closed paths in the region. Thus

the condition is necessary.

The condition is sufficient. Let F dr

C



z .


0 , for all closed paths in the given region. Let AP
1
B and

AP
2
B be two paths joining A and B. Then AP

1
BP

2
A is a closed path.

 
z F dr

AP BP A

.


0

1 2

i.e.,   F dr F dr

AP B BP A

 z z . .
 

1 2

0

i.e., F dr F dr

AP B AP B

 z z . .
 

1 2

0  i.e., F dr F dr

AP B AP B

 z z. .
 

1 2

Hence if F dr


z .


0  for all closed paths in the region, then F dr
A

B z .


 is independent of the path

joining A and B.

Corollary : If F dr

C



z 
is independent of the path of integration then F dr

C



z 
along any closed

path is zero.
Circulation : If C is a simple closed curve (i.e., a curve which does not intersect itself anywhere),

then the tangent line integral of F


 around C is called the circulation of F


 about C and is written as

F dr F dx F dy F dz
C C

   z z  
F
HG

I
KJ.


1 2 3 .

Note : If F


represents the velocity of a fluid particle then the F dr

C



z 
is called the circulating of

F


 around C. When the circulation is zero in a region, then F


is said to be irrotational in that region.

    Fig 4.2
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Note – 1:If the scalar point is replaced by vector products the corresponding line integral is F dr

C



z 

which is a vector.

Note –2: If the vector function F


 is replaced by a scalar function , then the corresponding line integral

is denoted as dr

C

z  which is a vector..

Note–3 : If F x y z i j k


  , ,   b g f f f1 2 3  and 

r xi yj zk      then

F dr
dx

dt

dy

dx

dz

dt
dt

C
t

tz z   
F
HG

I
KJ


f f f1 2 3

1

2

Note 4 : If C is a closed curve, then the integral sign 
C

z is replaced by 

C

z .
In all the above line integrals, it is assumed that the path of integration is

piecewise smooth. For a line integral over a closed path C, the symbol

instead of

CC

zz FHG
I
KJ  is sometimes used in the literature. (fig 4.3)

From the definition of line integral, it follows that the following properties are valid for line
integrals :

(a) k w ds k w ds

CC

 zz  (k constant)

(b) f g ds f ds g ds

CCC

   zzz b g

(orientation of C is the same in all the three integrals.)

(c) w ds w ds w ds

CCC

  zzz ,

21

, where the path C is subdivided into two arcs C
1
 and C

2
, which

have the same orientation as C.

Note that if the sense of integration along a curve C is reversed, the value of the line integral
is multiplied by –1.

The question is now arises is – How is a line integral evaluated ? We shall now answer this
question.

Additivity :

Line integrals have the useful property that if a curve C is made by joining a finite number
of curves C

1
, C

2
 .........C

n
 end to end, then the integral of a function over C is the sum of the

integrals over the curve that make it up.

fds fds fds fds

C CCC n

z zzz   ........

21

    Fig 4.3
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4.2 : Mass and Moment Calculations

Mass and moment formulas for coil springs, thin rods and wires lying along a smooth curve C in
space. The distribution is described by a continuous density function (x, y, z) (mass per unit length.)

Mass    zM x y z ds x y z density
C
  , , , ,b g b gc h .

First moments about the co-ordinate planes :

M x ds M y dsyz
C

zx
C

 z z , , M z dsxy
C

 z 
Co-ordinates of the centre of mass :

x M M y M M z M Myz zx xy  , , .

Moments of Inertia about axes and other lines :

I y z dsx

C

 z 2 2d i  , I z x dsy

C

 z 2 2d i 

I x y dsz

C

 z 2 2d i  , 
I r dsL

C

 z 2 

r (x, y, z) = distance from the point (x, y, z) to the line L.

Radius of gyration about a line L, R I ML L .

Illustration : Finding Mass, Centre of Mass moment of inertia, radius of gyration of a coil spring

lies along the helix r t cost i sint j tkb g b g b g     , 0  t  2. The spring’s density is a

constant  = 1.
Solution : The symmetries involved, the cetntre of mass lies at the point (0, 0, ) on z-axis.

We first find ds
dx

dt

dy

dt

dz

dt

F
HG
I
KJ 
F
HG
I
KJ 
F
HG
I
KJ

2 2 2

    sin cost tb g b g2 2
1 2

M ds dt t

Helix

   z z 


1 2 2 2 2
0

2

0

2

.

I x y ds t t dt dt tZ

Helix

      z zz2 2 2 2

0

2

0

2

0

2

1 2 2 2 2 2d i d i 
 

cos sin .

R I MZ z  
2 2

2 2
1




.

4.3 : Work Done by a Force over a Curve in Space

Supppose that the vector field F M x y z i N x y z j P x y z k


  , ,  , ,  , , b g b g b g  represents a force

through out a region in space and that
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
r t g t i h t j k t kb g b g b g b g     a  t  b

is a smooth curve in the region. Then the integral of F.T. the scalar component of F


 in the

direction of the curves unit tangent vector over the curve is called the work done by F


over the curve

from a to b. To evaluate the work integral along a smooth curve r(t), takes following steps.

 Evaluate F


 on the curve as a function of parameter t.

 Find 
dr

dt



.

 Integral F


.
dr

dt



 from t = a to t = b.

Six different ways to write the work integrals :

W F Tds

t a

t b








z 






z F dr

t a

t b

 (Compact differential form)

 
z F

dr

dt
dt

b

a

.  (Parameter t and velocity vector 
dr

dt



)

  
F
HG

I
KJz M

dg

dt
N

dh

dt
P

dk

dt
dt

a

b

(Component function)

  
F
HG

I
KJz M

dx

dt
N

dy

dt
P

dz

dt
dt

a

b

  z Mdx Ndy Pdz
a

b

Flow Integrals and circulation for velocity fields :

If r(t) is a smooth curve in the domain of continuous velocity field F the flow along the curve  t

= a to t = b is flow  z F Tds
a

b

. .

The integral in this case is called a flow integral. If the curve is a closed loop, the flow is called
the circulation around the curve.

4.4 : Flux Across a Plane Curve

If C is a smooth closed curve in the domain of a continuously vector field

F M x y i N x y j


 ,  , b g b g  in the plane and if n  is the outward. Pointing unit normal vector on

C, the flux of F across C is

Flux of F across C F nds
C

 z . 

If F M x y i N x y j


 ,  , b g b g , then F n M x y
dy

ds
N x y

dx

ds



 .  , ,b g b g
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Hence, F nds M
dy

ds
N

dx

ds
CC



 
F
HG

I
KJzz .



Mdy Ndx

C

z
The integral can be evaluated from any smooth parametrization x = g(t), y = h(t) a  t  b, that
traces ‘C’ centre clockwise exactly once.

Illustrative Examples

Example – 1 :  A Fluid’s velocity field is F = xi + zj + yk. Find the circulation along the helix

r t costi sintj tkb g      , 0  t  /2.

Solution : Evaluate F


 on the curve,

F xi xj yk


       cos   sin t i tj t kb g b g  and then find 
dr

dt



.

dr

dt
t i t j k



   sin  cos  b g b g

We integrate F
dr

dt



.



 from t = 0 to t   2 .

F
dr

dt
t t t t t



   . cos sin cos sin



b gb g b gb g b gb g1
= – sint.cost + t cost + sin t

Flow = F
dr

dt
dt t t t t t dt

t a

t b 



 F
HG
I
KJ    z z. sin .cos cos sinb g

0

2

 
L
NM

O
QP

 
F
HG
I
KJ  
F
HG
I
KJ  

cos
sin

2

0

2

2
0

2

1

2
0

2

1

2

t
t t


 

.

Example–2 : Find the circulation of the field F x y i xj


  b g   around the circle

r t cost i sint jb g b g b g   , 0  t  2.

Solution : First we evaluate

F x y i xj t t i t j


     b g b g b g  cos sin  cos 

dr

dt
t i t j



  sin  cos b g b g

F
dr

dt
t t t t



   . sin .cos sin cos


2 2d i  = 1 – sint. cost

Circulation   zz F
dr

dt
dt t t dt. sin .cos1

0

2

0

2 b g

 
L
NM

O
QP

t
tsin2

0

2

2
2




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Example – 3 : Find the flux of F x y i xj


  b g   across the circle x2 + y2 = 1, in the xy plane.

Solution : The parameterization 

r t t i t jb g b g b g cos  sin  , 0  t  2

M = x – y = cost – sint dy = d (sint) = cos dt

N = x dx = d (cost) = – sint dt,

we find

Flux     zz Mdy Ndx t t t t t dt

C

cos sin cos sin cos2

0

2 d i

 
F
HG

I
KJ  
L
NM

O
QPz zcos

cos sin2

0

2

0

2

0

2 1 2

2 2 4
tdt

t
dt

t t




= .

The flux of F across the circle is .

Example – 4 : Evaluate x y z ds2 2 2 2

C

 z d i , where C is the arc of circular helix.


r t cost i sint j 3 t kb g       from A  (1, 0, 0) to B (1, 0, 2).

Solution : Here 

r t t i t j t kb g   cos  sin  3 ,

      sin  cos  r t t i t j k
dr

dt
b g 3



Now 
ds

dt
r r t t r        sin cos | |2 2 29 10

On C, (x2 + y2 + z2)2 = [cos2t + sin2t + 9t2]2 = (1 + 9t2)2

Also A (1, 0, 0) and B (1, 0, 2 ) on C correspond to 0  t  2 .

Thus, we have x y z t
ds

dt
dt

C

2 2 2 2 2 2

0

2

1 9    zz d i d i

  z10 1 81 184 2

0

2

t t dtd i

  
L
NM

O
QP

10 81
5

18
3

5 3

0

2

t
t t



  
L
NM

O
QP10 2 6 2

81

5
2

3 5
  b g b g

= 506400

Example – 5 : Evaluate the line integral x ydx x z dy x y z dz2

C

  z b g  where C is the arc of the

parabola y = x2 in the plane z = 2 from A (0, 0, 2) to B (1, 1, 2).

Solution : Since on C, y = x2 and z = 2 (constant),

 on C, dy = 2x dx and dz = 0.

It follows that on C, the integral of the last term in the given integrand is zero.
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Thus, x ydx x z dy x y z dz x x dx x x dx
C

2 2 2

0

1

2 2       z zb g b g
(... y = x2 and z = 2 on C)

     z x x x dx
x x x4 2

5 3 2

0

1

0

1

2 4
5

2
3

4
2

d i

    
1

5

2

3
2

17

15
 (fig 4.4)

Let us now take up an example in which we
consider integration of a line integral over
different paths with the same end points.

Example – 6 :  Let C be the line segment from A (0, 0) to B (1, 1) and let f (x, y) = x + y2.

Evaluate f x, y ds

C

b gz  when

(a) C is characterised by x = t, y = t, 0  t  1.

(b) C has parametric representation x = sin t, y = sin t, 0  t 


2


Solution : (a) If x = t, y = t, 0  t  1, then

f x y ds t t
dx

dt

dy

dt
dt

C

,b g d iz z  
F
HG
I
KJ 
F
HG
I
KJ

2

0

1
2 2

       z t t dt
t t2

0

1 2 3

0

1

1 1 2
2 3

5 2

6
d i

(b) If x = sin t, y = sin t, 0  t  


2
, then

f x y ds x y
dx

dt

dy

dt
dt

C C

,b g d iz z  
F
HG
I
KJ 
F
HG
I
KJ

2
2 2

  z sin sin cos cost t t t dt2 2 2

0

2 d i


 z2 2

0

2 sin cos sin cost t t t dtd i


 2
2 3

2 3

0

2sin sint t


 
5 2

6

4.5 : Application of Line Integrals

In this example, the integrands and the end points of the paths of integration are the same, but the
values of the line integrals are different. This illustrates the important fact that.
In general, the values of a line integral of a given function depends not only on the end points but
also on the geometric shape of the path of integrals are of the form

f f fx y z
dx

ds
x y z

dy

ds
or x y z

dz

ds
, , , , , , ,b g b g b g

Fig 4.4
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where 
dx

ds

dy

ds
and

dz

ds
, are the derivatives of the functions occuring in the parametric

representation of the path of integration. Then we simply write

f fx y z
dx

ds
ds x y z dx

CC

, , , ,b g b g zz
and similar expressions in the other two cases.
For sums of these types of integrals along the same path C, we adopt the notation

f fdx g dy h dz dx g dy h dz
C C CC

    z z zz b g
In many cases, the functions f, g, h are components f

1
, f

2
, f

3
 of a vector function

f f f f  1 2 3
  i j k

Then f
1
dx + f

2
dy + f

3
dz = f f f1 2 3

dx

ds

dy

ds

dz

ds
ds 

F
HG

I
KJ , the expression in parenthesis on the right

being the dot product of the vector f and the unit tangent vector.

dr

ds

dx

ds
i

dy

ds
j

dz

ds
k     ,

where r (s) represents the path of the integration of the line integral. Therefore,

f f f f1 2 3dx dy dz
dr

ds
ds

CC

   zz b g  
 z f dr

C



where dr dxi dyj dzk

     .

Now if f represents a force whose point of application moves along a curve

r t x t i y t j z t k a t bb g b g b g b g      ,

from a point A to a point B in space, then 
f z dr

C


 represents the work done by the force f in

moving a particle from point A to point B along the curve C.

The representation in equation i.e., f z dr

ds
ds

C



 emphasises the fact that the work done by the

force f is the value of the line integral along the curve of the tangential component of the force
field f.

4.6 : Path Independence – Conservative Fields

Let F


 be a vector field with components F
1
, F

2
, F

3
 and F

1
, F

2
, F

3
 be continuous throughout some

connected region D.
Consider two point A and B in D. Suppose that C is any piecewise smooth curve joining A and B
given by x = x (t), y = y (t), z = z (t),  t

1
  t  t

2
.
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Region D is connected if any two points of D can be joined by a broken line of finitely many
linear segments all of which belong to D.

If there exists a differentiable function f such that

F i
x

j
y

k
z



  













f

f f f  
, then along C, f = f [x(t), y(t), z(t)] is a function of t and





























f f x f f

t x t y

y

t z

z

t
    
F
HG

I
KJf   i

dx

dt
j

dy

dt
k

dz

dt
  f

dr

dt

We thus have F dr





 = f  dr
    f

dr

dt
dt




df

dt
dt

Now integrating F dr





 along C from A to B, we get

F dr
df

dt
dt f F

C t

t
 

   z z 

1

2

 z d x t y t z t
t

t

f b g b g b gm r, ,

1

2

 f x t y t z t
t

tb g b g b gc h,
1

2

 = f [x (t
2
), y(t

2
), z(t

2
)] – f [x(t

1
), y(t

1
), z(t

1
)]

      
z zF dr dr B A

C A

B
 

f f fb g b g

The value of the integral [f (B) – f (A)] does not depend on the path C at all. This result is
analogue of the First Fundamental Theorem of Integral Calculus, viz.,

f f f  z x dx b a
a

b

b g b g b g

The only difference is that we have f  dr
  in place of f  (x) dx. This analogy suggests that if we

define a function f by the rule.

f x y z F dr
A

x y z

    
  zz , ,

, ,b g b g 

then it will also be true that f = F


This result f = F


 is indeed true when the right-hand side of relation is path-independent. Thus

a necessary and sufficient condition for the integral F dr
A

B

z 
 to be independent of the path joining

the points A and B in some connected region D is that there exists a differentiable function of
such that

F i
x

j
y

k
z



  













f

f f f  
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 throughout D, where components f
1
, f

2
, f

3
 of vector field F are continuous throughout D and then

F dr B A
A

B


  z 
f fb g b g .

When F is a force such that the work-integral from A to B is the same for all paths, the field is
said to be conservative. Using the above result, we can say that : A force field F is conservative
if and only if it is a gradient field, i.e., F = f ,  for some differentiable function f.

A function f (x, y, z) that has the property that it’s gradient gives the force vector F is called a
potential function. Sometimes a minus sign is introduced, e.g., the electric intensity of a field is
the negative of the potential gradient in the field.

Let us consider the following example.

Exact Differential Form :
Any expression M(x, y, z) dx + N(x, y, z)dy + P(x, y, z) dz is a differential form. A differential form

is exact if Mdx Ndy
f

x
dx

f

y
dy

f

z
dz df  












Pdz  for some scalar function f through

out D.
Component Test for Exactness of Mdx + Ndy + Pdz :
The differential form Mdx + Ndy + Pdz is exact if and only if

















P

y

N

z

M

z

P

x
, and 









N

x

M

y

This is equivalent to saying that the field F Mi Nj Pk      is conservative.

Illustrative Examples

Example – 1 :  Find the potential for conservative Fields and component test for conservative fields.

Let F M x, y, z i N x, y, z j P x, y, z k  b g b g b g    be a field whose component functions have

continuous first partial derivatives. Then F


 is conservative if and only if

















P

y

N

z
,

M

z

P

x
 and 









N

x
=

M

y
.

Solution : Given F M x y z i N x y z j P x y z k


  , ,  , ,  , , b g b g b g













f

x
i

f

y
j

f

z
k  













F
HG
I
KJ

p

y y

f

z



 



 









F
HG
I
KJ 





2 2f

y z

f

z y z

f

y

N

z

The others equation (2) are proved similarly.

Once we know that F is conservative, we want to find a potential function for F. i.e.  


f F .




 




 






f

x
M

f

y
N

f

z
P, , .
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Example – 2 : Show that 2xydx + (x2 – z2) dy – 2yzdz is exact and evaluate the integral

2xydx x z dy 2yzdz2 2

0,0,0

1,2,3

  z d ib g
b g

..

Solution : We let M = 2xy, N = x2 – z2, P = – 2yz and apply the test for exactness :




  








 





P

y
z

N

z

M

z

P

x
2 0, , 




 





N

x
x

M

y
2

The equalities tells us 2xydx + (x2 – z2)dy – 2yz dz is exact so

2xydx + (x2 – z2) dy – 2yz dz = df

for some function f, and the integral’s value is f (1, 2, 3) – f (0, 0, 0)

M
f

x
xy




 2 ...(1)

 N
f

y
x z




 2 2d i ...(2)

 P
f

z
yz




 2 ...(3)

From the first equation (1) and integrate w.r.t. x we get

f (x, y, z) = x2y + g(y, z) ...(4)

Again differentiating (4) w.r.t. y partially and equalising (2)




 




 

f

y
x

g

y
x z2 2 2





    

g

y
z g y z y2 2b g + h(z) ...(5)

Hence y is a function of z

f (x, y, z) = x2y – z2y + h(z) ...(6)

Again differentiating (6) partially w.r.t. z. and equalising with (3)




  




 

f

z
yz

h

z
yz2 2




  

h

z
h z c0 b g

So h must be a constant

Therefore, f (x, y, z) = x2y – yz2 + c

The value of the integral

f (1, 2, 3) – f (0, 0, 0) = 2 – 2(9) + c – c

= 2 – 18 = – 16.

Example – 3 :  Finding a potential function & show that

F e cosy yz i xz e siny j xy z kx x     d i d i b g    is conservative.

Solution : M = excosy + yz, N = xz – exsiny, P = xy + z.
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


 





P

y
x

N

z
,




 





M

z
y

P

x
, 



   





N

x
e y z

M

y
x sin ....(1)

Once we know to find a conservative we usually want to find a potential function for F on

solving  


f F .

M
f

x
e y yzx




 cos , N

f

y
xz e yx




  sin , P

f

z
xy z




  ....(2)

We integrate (1) with respect to x, treating y, z constant.
f (x, y, z) = ex cosy + xyz + g(y, z) ....(3)
Again differentiating partially (3) w.r.t. y and compare with (2).




   





f

y
e y xz

g

y
x sin

i.e.,   



  




e y xz

g

y
xz e y

g

y
x xsin sin 0

So we get 





g

y
0 . Therefore, g is a function of z alone.

f (x, y, z) = ex cosy + xyz + h(z) ....(4)
Now again differentiating (4) partially w.r.t. z, we get and compare with (2)




 




 

f

z
xy

h

z
xy z 






h

z
z .

So h z
z

Cb g  
2

2
.

Hence f x y z e y xyz
z

cx, , cosb g    
2

2

Example – 4 : Show that F 2xy z i x 2yz j y 2zx k2 2 2


     d i d i d i    is conservative and find a

potential function for it.
Solution : First we have to show that F is conservative or not clearly M = 2xy – y2, N = x2 + 2yz,

P = y2 – 2zx and calculate 



 








 





P

y
y

N

z

M

z

P

x
2 0,




 





N

x
x

M

y
2 .

The two are unequal. So F is not conservative.
We find f by integrating the equations

M
f

x
xy z




 2 2

... (1)

N
f

y
x y




 2 2 ... (2)

P
f

z
y zx




 2 2 ... (3)
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We integrate first equation with respect to x holding y & z are constant

f (x, y, z) = x2y – z2x + g(y, z)

Again differentiating partially w.r.t. y and equalising with (3) we get




 




 

f

y
x

g

y
x y2 2 2

i.e., 





g

y
y2   g(y) = y2 + c

f (x, y, z) = x2y – z2x + y2 + h(z)

Again differentiating w.r.t.z and equalising with (3) we get




  




 

f

z
zx

h

z
y zx2 22 






h

z
y2

 h(z) = y2z + c

Hence f (x, y, z) = x2y – z2x + y2 + y2z + c

Example – 5 :  Find a potential function f  for the field F. If F 2xi 3yj 4zk     .

Solution : Here M
f

x
x




 2 ... (1)

N
f

y
y




 3 ... (2)

P
f

z
z




 4 ... (3)

First integrate M with respect to x, i.e.,  y & z are constant.

f x y z x g y z, , ,b g b g 2

Again differentiating partially w.r.t. y  and equalising with (2)








 






f

y

g

y
y

g

y
y3 3

  g y
y

h zb g b g3

2

2

  (Intergrating w.r.t.y)

f x y z x
y

h z, ,b g b g  2
23

2
Again differentiating partially w.r.t.z and equalising with (3) we get




 




 






f

z

h

z
z

h

z
z0 4 4

h(z) = 2z2 + c

Hence f (x, y, z) = x
y

z c2
2

23

2
2  
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Example – 6 : Find the circulation of F


round the curve c where F yi zj xk


      and c is the circle

x2 + y2 = 1, z = 0.
Solution : The required circulation is given by

  F
C

z z     dr
C


yi zj xk dxi dyj dzk     e j e j     zz ydx zdy xdz ydx

CC

 as z = 0 on C.

The parameteric equation of the curve i is x = cos t, y = sin t, and 0  t  2

    
z z zF

C

dr ydx t t dt
C


sin sinb g

0

2

   
L
NM

O
QPz12 2 1

1

2

2

2
0

2

0

2

cos
sin

t dt
t

tb g
 

    2
1

2
 b g

Example – 7 :  Find the work done when a foce F = (x2 – y2 + x) i  – (2xy + y) j moves a particle in

the xy – plane from (0, 0) to (1, 1) along the probabola y2 = x. Is the work done
different when the path is the straight line y = x ?

Solution : The parabola y2 = x has a parametric representation y = t, x = t2.

From (0, 0) to (1, 1), variation of t is 0  t  1.

 Work done along the parabola

          = drF x y x i xy y j dxi dyj
C C



       z z 2 2 2d i b g d i        z x y x dx xy y dy
C

2 2 2d i b g

       z t t t t dt t t t dt4 2 2 2

0

1

2 2d i d i   
L
NM

O
QP  

1

3

1

2

1

2

2

3
6 4 2

0

1

t t t

We can similarily find the work done when the particle move from (0, 0) to (1,1) along y = x. In
this case also we find that the work done is

   
L
NM

O
QP      

1

3

1

2
2

1

2

1

3

1

2
2

1

2

5

3
3 2 2 2

0 0

1 1

x x xy y
,

,

b g

b g

as obtained earlier. This is because, we notice that

F grad x x xy y   
F
HG

I
KJ

1

3

1

2
2

1

2
3 2 2 2

Example – 8 : If F
yi xj

x y2 2




 



 
, find work done by F


 along the upper half of the circle passing

through the points (–1, 0) and (1, 0).

Solution : F


 
 



F
HG

I
KJ zz dr dxi dyj

CC

 yi xj

x y2 2

 
 d i   

z ydx xdy

x y
C

2 2
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Required workdone


 




 



L
N
MM

O
Q
PPz z2

2 2 2 2

1 2

ydx xdy
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Example – 9 : If F 3xyi y j2


   . Evaluate F dr

C



z 
, where C is the curve in xy plane y = 2x2 from

(0, 0) to (1, 2).
Solution :Since the integration is performed in the xy-plane (z = 0)

       we can take 
 
r xi yj dr dxi dyj    ,  

F dr
C



      z zz 
3 32 2xyi y j dxi dyj xydx y dy

C

   d i d i
C

   zz3 2xydx y dy
CC

To integrate; change 1st integrand to function of x only with the help of y = 2x2.

    
 zzz F dr

C


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x x dx y dy   x varies from 0 to 1 and y varies from 0 to 2.
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Or Second Method. Take parametric equation of the parabola y = 2x2 which is x = t, y = 2t2

 when x = t : dx = dt, when y = 2t2; dy = 4t dt

At the pt (0, 0), x = 0,  t = 0

At the pt (1, 2), x = 1,  t = 1

            
F
HG

I
KJ       
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    Fig.4.5
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Note that if the curve is traversed in the opposite sense i.e. from (1, 2) to (0, 0) the value of the

integral would 
7

6
 instead of 

7

6
.

Example – 10 : Find the work done in moving a particle in the force field F 3x i 2xz y j zk2


     b g
along.

(i)  the straight line from (0, 0, 0) to (2, 1, 3).

(ii) the curve defined x2 = 4y, 3x3 = 8z from x = 0 to x = 2.

Solution : Work done F 3x i 2xz y j zk idx jdy kdz2


       z zdr

C

      b ge j e j

    z 3x dx 2xz y dy zdz2 b g
C

(i) The equations of the line through (0, 0, 0) to (2, 1, 3) is

x y z


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

0

2 0

0

1 0

0

3 0
 or 

x y z
t

2 1 3
    (say)

 x = 2t, y = t, z = 3t

 dx = 2dt, dy = dt, dz = 3 dt

When x = 0, t = 0, When x = 2, t = 1

 t varies from 0 to 1.

Work done    
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(ii) Along the curve x2 = 4y, 3x3 = 8z

For parametric equation of the curve, we take x = t   y
t

z
t2 3
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3

8
,

 dx = dt, dy
tdt

dz
t

dt 
2

9
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2

, .

When x = 0, t = 0  t varies from 0 to 2.
When x = 2, t = 2
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