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6.0 :  Introduction

In the early eighteenth century D ‘Alembert and Euler had given solutions in closed form

for the problem of a vibrating string, using two ordinary functions. Where as Daniel Burnoulli
(1700-1782) had found a solution in terms of an infinite series  of trigonometric functions. These

series, named after the French physicist Joseph Fourier (1768-1830), represent a very powerful
tool in connection with solutions of various problems involving ordinary and partial differential

equations. Fourier under took systemetic study of the subject in his memorable monograph
‘‘Theories analytic dela chaleur’’, in 1882 while dealing with the problems of heat conduction

along a bar.
These series has a deep influence in the further development of mathematics and mathematical

physics. Several phenomenon that are studied in engineering are periodic in nature. They are
repeated after an interval of time. For example, the current and voltage in an alternating circuit,

conduction of heat in solids, the displacement velocity and acceleration of a piston, electrodynamics
and wave propagation in different types of media and many parameters in a vibrating system are

all periodic.
In many engineering problems especially in the study  of periodic phenomenon in conduction

of heat, electro-dynamics and acoustics, it is necessary to express a function in a series of sines
and cosines. In this chapter we discuss the basic concepts relating Fourier series and obtain Fourier
series development of several functions.

6.1  Periodic Functions

Definition : A function f : R  R is said to be periodic if there exists a positive number T

such that f(x + T) = f(x) for all real numbers x and T is called a period of f. If a periodic function has
a smallest positive period T, then T is called the primitive period of f.

Example :

1. The trigonometric functions sin x and cosx are periodic functions with primitive period
2.

2. sin 2x and cos 2x are periodic functions with primitive period .

3. The constant function f(x) = c is a periodic function. In fact every positive real number
is a period of f and hence this periodic function has no primitive period.

4. Let f : R  R be the function defined by
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 f x
if x is rational

if x is irrational
b g  RST

0

1 .

Let T be any rational number. If x is rational, then x + T is also rational and if x is irrational,
then x + T is also irrational. Hence

f x T
if x is rational

if x is irrational
 
RSTb g 0

1  = f(x)

Hence every rational number is a period of f and f has no primitive period.

Remark. Let f be a periodic function with period T. If the values f(x) are known in an
interval of length T, then by periodicity, f(x) can be determined for all x. Hence the graph of
a periodic function is obtained by periodic repetition of its graph in any interval of length T.

Example – 1. The graph of the periodic function sin x is given in (fig.6.1)

     

(Fig.6.1)

2. Let f be the periodic function defined by

f x
if x

if x
b g     

 

RST
1 0

1 0





and f(x + 2) = f(x).

The graph of f is given in (fig.6.2)

              

(Fig.6.2)

3. Let f be the periodic function defined by

f(x) = x if –  < x < 

and f(x + 2) = f(x)
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The graph of f is given in (fig.6.3)

 

(Fig.6.3)

Theorem – 1. Let f and g be periodic functions with period T and let a and b be real numbers.
Prove that af + bg is also a periodic functions with period T.

Proof : Since f and g are periodic with period T.

f (x + T) = f (x) .........(1)

            and g (x + T) = g(x) for all x. .......(2)

Now (af + bg) (x + T) = af (x + T) + bg (x + T)

= af (x) + bg (x) (by (1) and (2))

= (af + bg) (x)

Hence af + bg is periodic with period T.

Theorem – 2. If T is a period of f, prove that nT where n is any positive integer, is also a
period of f.

Proof : f (x) = f (x + T) = f (x + 2T) = ... = f(x + (n –1)T) = f (x + nT)

it follows that nT is a period of f.

Theorem – 3. Let n be any positive integer. Prove that sin nx is a periodic function with
period 2/n.

Proof : Since sinx a periodic function with period 2, we have

sin (x + 2) = sin x for all x. .........(1)

Now let g(x) = sin nx.

Then g x
n

n x
n


F
HG

I
KJ  

F
HG

I
KJ

F
HG

I
KJ

2 2 
sin

= sin (nx + 2) = sin nx = g(x) by (1).

Hence g(x) = sin nx is a periodic function with period 2/n.

Theorem – 4. Let f(x) be a periodic function with period T. Prove that for any positive real
number a, f(ax) is a periodic function with period T/a.

Proof : We have f (x + T) = f (x) for all x.

Let g(x) = f (ax)
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Now g x
T

a
f a x

T

a

F
HG
I
KJ  

F
HG
I
KJ

F
HG

I
KJ

= f (ax + T) = f (ax) = g (x).

Hence g(x) is a periodic function with period T/a.

Theorem – 5. For a periodic function of period 2, prove that

(i) f f( ) ( )x dx x dxz z








 

 

2

2

   (ii) f f( ) ( )x dx x dx




z z






 2

(iii)   f f( ) ( )x dx x dx 
 

z z










 being any numbers.

Proof : (i) For a periodic function of period 2, we know that

f (t – 2) = f (t)

Hence putting t – 2 = x, t = x + 2 for all , we get

f f( ) ( )x dx t dt 




zz 2
2

2


 

 





 = f f( ) ( )t dt x dx








zz
 

 

 

 

2

2

2

2

(ii) f f f f( ) ( ) ( ) ( )x dx x dx x dx x dx  




z zzz






 







  22

 = f f f( ) ( ) ( )x dx x dx x dx 




zzz












   (by i)

= f f f( ) ( ) ( )x dx x dx x dx 







zzz












 = f ( )x dx


z




(iii) Let  + x = t

when x = – , t = 

 x = , t = 

     












zzzzz f x dx f t dt f t dt f t dt f t dt



 





 



 

 





b g b g b g b g b g

= f f f( ) ( ) ( )t dt t dt t dt 



zzz
 







 



   
 

z zf f( ) ( )t dt x dx








These results, in fact mean that the integral of a periodic function over any interval whose
length is equal to it’s period.
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Illustrative Examples

Example -1 :  Determine the period of each of the following function

  (i) sin2x (ii)  |cos x|    (iii)   x – [x]
Soln:

(i) We have  sin
cos

cos2 1 2

2

1

2

1

2
2x

x
x f x


   b g

Since cos 2x is a periodic function with  period 
2

2


 .

So f(x) is periodic with period .

(ii) We have  f x x xb g  cos cos2  x xFH IK2


1 2

2

cos x

So f(x) =  |cos x| is  periodic with period =  
2

2


 .

(iii) let f(x) = x – [x] be a periodic fucntion with period T.

them f (x + T) = f(x) for all x  R

x + T – [x + T] = x – [x] for all x R

[x + T] – [x]  = T for  all x R

 T  =1, 2, 3, 4 ..............

Since T is the smallest positive real number such that f(f + T) = f(x) for all x R. therefore
T = 1.

Example -2: Give an example of a sinusoidal periodic  function whose period is

  (i)
c

z k
      (ii)



k

Soln: Since sin x is a peridic function with period 2. So sin ax is periodic with period 
2

a
.

(i) Here 
2 2 

a

c

z k
a

z k

c



 

b g

So the required function is  sin
2 z k

c
x

RST
UVW

b g

(ii) Here  
2

2
 

a k
a k  

Hence  the required function is sin 2 kx.
Example - 3 :  Find, Fundamental Period of the followings

    Sin 2x,  Cosx,Cos2x

Soln: Period of the function f(x) = sin 2x is 
2

2




Period of the function f(x) = cos x is  
2

2





Period of the function f(x) = cos 2x is 
2

2
1





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Example - 4 : Find the smallest positive period T of  the followings

    Sin nx, Sin
2 x

k

F
HG
I
KJ , C

2 nx

k
os

F
HG
I
KJ

Soln: Period of the function f(x) = sin nx is 
2

n

Similarly, period of the function f(x) = sin 
2x

k
k

F
HG
I
KJ   is 

2

2





k

kF
HG
I
KJ


Period of the fucntion f(x) =  cos
2nx

k

F
HG
I
KJ  is 

2

2



n

k

k

nF
HG
I
KJ

F
HG
I
KJ

Example - 5 : If f(x) and g(x) have period T, show that h(x) = a f(x) + bg(x) where a and b are
constants, has the period T. Thus all functions of period T from a vector space.

Soln: Since f(x) and g(x) are given to be periodic functions having a period T, so we have

f(x + T) = f(x) for all x
g (x + T) =g (x) for all x
Hence h (x + T) = a f( x + T) + bg (x + T)
= a f(x) + b g (x)
= h (x) for all x
So h (x) a period T.

Draw the graph of the following functions from Ex.-6 to Ex. - 10.
Example - 6 : f(x) = T – |x|,

Soln:

Example - 7 : f(x) = e – |x|

Soln:
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Example - 8 : f(x)
0 if x 0

x if 0 x2
  

 

RST




Soln:

Example - 9 : f x
x if x 0

x if 0 x
b g    

  

RST


 

Soln:

Example - 10: f x
0 if x 0

e if 0 xxb g    

 

RST 





Soln:
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6.2 : Even and odd Functions

A function f(x) is said to be even if f(–x) = f(x).  Thus cos x, sec x, x2, x4 are even functions.
In general, all functions having even powers are even functions e.g.

sinn x, xn, cosnx, where n is an  even positive integer are even fucntions.

A function f(x) is said to be odd if f(–x) = –f(x). In general all functions having odd powers
are odd functions e.g. sinnx, xn, where n is an odd integer.

Thus sin x, cosec x, tan x3 are odd functions

Let the sufficfess‘e’ and ‘o’ denote even and odd respectively. If f(x) is an even function by
defn f

e
(–x) = f

e
(x)

If f(x) is an odd function by defn f
o
(–x) = –f

o
(x).

Any functions f(x) can be written in terms of it’s even and odd parts such that

f(x) = f
e
(x) + f

o
(x) .............(1)

Replacing x by – x

f(–x) = f
e
 (–x) + f

o
(–x) = f

e
 (x) – f

o
(x).........(2)

Adding (1) & (2)

f(x) + f(–x) = 2f
e
 (x) f

e
(x) = 

f f( ) ( )x x 

2

Substracting (2) from (1)

f (x) – f (–x) = 2f
o
(x)  f

o
(x) = 

f f( ) ( )x x 

2

Thus, if f(x) is given we can always find even and odd points. Even and odd functions
possess the following properties.

Sum of even functions = even function

sum of odd functions = odd function

even function × even function = even function

odd function × odd function = even function

even function × odd function = odd function.

Thus if f(x) is an odd function f(x) cos nx is also an odd function but f(x) sin nx is an even
function.

If an even function is added to an odd function the result is neither even nor odd. The graph
of an even function is symmetrical about y - axis while the graph of an odd fucntion is symmetrical
about origin.

We also know that

f ( ) ,x dx
a

a


z 0 where f(x) is an  odd function and

f f( ) ( ) ,x dx x dx
o

a

a

a

 zz 2 where f(x) is an even function
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Illustration : Determine whether the following functions are even or odd.

(i) x
a 1

a 1

x

x





F
HG
I
KJ     (ii) log x x 12 FH IK (iii)  sin x – cos x

Soln: (i) Let f x x
a

a

x

xb g  



F
HG
I
KJ

1

1

Then f x x
a

a
x a

a

x
a

a

x

x

x

x

x

x
  





F
HG
I
KJ  





F
H
GG

I
K
JJ  





F
HG
I
KJ



a f a f a f a f1

1

1 1

1 1

1

1






F
HG
I
KJ x

a

a
f x

x

x

1

1
b g

So f(x) is an even function.

(ii) let f(x)  = log x x FH IK2 1

Then f(x) + f (–x) = log logx x x x FH IK    FH IK2 21 1

= log (– x2 + x2 +1) = log 1 = 0

f (x) + f (–x) = 0

 f(–x) = – f(x)

So f(x) is an odd function.

(ii) Let f(x) = sin x – cos x

Then f(–x)= sin (–x) – cos (–x) = – sin x + cos x, clearly f(–x) is neither equal to f(x) nor to
–f(x).

So f(x)  is neither an even function nor an odd fucntion.

6.3 : Some useful Integrals

The following integrals are useful in determining Fourier series co-efficients, where m & n
are integers.

(1) cos sinnx dx nx dx
 zz 

 



  22

= 0

(2) cos .cos sin sinnx mxdx mx nxdx 
 zz 

 



  22

0  , (m  n)

(3) sin .cos cos sinnx nx dx nx nx dx 
 zz 0

22



 



 

, (n  0)

(4) cos sin2 2
22

nx dx nx dx 
 zz 



 



 

, (n  0)

(5) cos .cos ,

,

mx nx dx

m n

m n

m n





 

 

R
S|
T|

z
0

0

2 0







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(6) sin .sin
, ,

mx nxdx
m n and m n

for m n


  

 

RSTz 0 0

0



(7) cos .sinmx nxdx 
z 0




Following results will be found useful while attempting problems of Fourier series

(1) sin n = cos n 
F
HG
I
KJ

1

2
, = 0, n  I

Thus sin  = sin 2 = sin 3 = ...............= 0

& cos 
  

2

3

2

5

2
0   cos cos ..............

(2) cos n = sin n 
F
HG
I
KJ

1

2
 = (–1)n, n  I

Thus cos  = cos 3  = cos 5 = .........= –1
cos  0 = cos 2 = cos 4 = .........=1

sin 


2
= sin 

5

2


= sin 

9

2


= ............ = 1

sin 
3

2


= sin 

7

2


 = sin 

11

2


= ...........= –1

(3) The rule for repeated integration by parts

u vdxz  = uv
1
– uv

2
+uv

3
 – uv

4
= ........

u= 
du

dx
, u = 

d u

dx

2

2 , u= 
d u

dx

3

3  ........ v
1
 = vdxz , v

2
 = v dx1z , v

3
 = v dx2z ..................

(4) e bx dx
e

a b
a bx b bxax

ax

sin sin cos


z 2 2  +c

(5) e bx dx
e

a b
a bx b bxax

ax

cos cos sin


z 2 2 +c

Fourier  Series :
Since periodic functions that occur in engineering problems are rather complicated,

representation of periodic functions in terms of a simple periodic functions is a matter of great
practical importance. We now discuss the problem of representing various functions of period 2
in terms of the simple functions 1, sin x, cos x, sin 2x, cos 2x, ..... sin nx, cos nx, .....

Definition : A series of the form

a
0
 + a

1
 cos x + b

1
 sin x + a

2
 cos 2x + b

2
 sin2x + ... + a

n
 cos nx + b

n
 sin nx + ...

  




a a nx b nxn n

n

0

1

cos sinb g
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where a
n
 and b

n
 are real constants is called a trigonometric series. a

n
 and b

n
 are real coefficients

of the series.

Since each term of the trigonometric series is a function of period 2, it follows that if the
series convereges, then the sum is also a function of period 2.

Let f(x) be a periodic function with period 2, which can be repeated by the following
trignometric series

f(x) = 
a

a0
1

2
 cos x + a

2
cos 2x + a

3
 cos 3x + .......+ b

1
 sin x + b

2
 sin 2x + b

3
 sin 3x +  .....

f(x) = 
a

a nx b nxn n

nn

0

112
 









 cos sin  .........(1)

The series (1) is called Fourier series and it’s co-efficients a
0
, a

n
 & b

n
 (n = 1, 2, 3.......) are

called Fourier co-efficient of f(x),

6.4 :  Euler’s Formulae

The Fourier series for the function f(x) in the interval < x < + 2 is given by

f(x) =  
a

a nx b nxn

n

n

n

0

1 12
 









 cos sin ......(1)

where a
0
= 

1 2

 

 

f ( )x dx
z

a
n
 = 

1 2

 

 

f ( )cosx nxdx
z b

n
 = 

1 2

 

 

f ( )sinx nxdx
z

These values a
0
, a

n
, & b

n
 are known as Euler’s formulae.

Proof : Let us assume for the time being that the series can be integrated term by term between the
limit

 &  + 2

f(x) = 
a

a nx b nxn n

nn

0

112
 









 cos sin .........(1)

To find a
0
, Integrating (1) both sides with respect to x between the limits &   +2, we get

f ( ) cosx dx
a

dx a nxdxn

n

 




 zzz 0
2

1

22

2 

 



 



 

 + b nxdxn

n

 

 z
1

2

sin


 

= 
a

x a
nx

n
b

nx

n
n

n

n

n

0 2

1

2 2

12 

 



 



 




  






L
NM
O
QP 

L
NM

O
QP 

sin cos
 = 

a
a0

0
2

2 0 0    

a x dx0

21


z 

 

f ( )
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To find a
n
 Multiply (1) by cosnx & integrte from x =  to x =  + 2 then we get

        f ( ) cos cos cos .cosx nxdx
a

nxdx a nx nxdxn

n

 


 

 zzz 0

1

222

2 

 



 



 

 + b nx nxdxn

n

 

 z
1

2

sin .cos


 

= 
a nx

n
a nxdx b nx nxdxn

n

n

n

0

2

1

2
2 2

12

sin
cos sin .cos

L
NM
O
QP  





  





 z z


 



 



 

The first and third integral on the right hand side are zero but second integral is equal to .

f ( )cosx nxdx


 z 2

 = a
n


a
n
 = 

1 2

 

 

f ( ) cosx nx dx
z

To find b
n
 : Multiplying each side by (1) in sin nx and integrate from x =  to  + 2, then

         f ( ) sin sin sin . cosx nx dx
a

nx dx a nx nx dxn

n


 



 



  



 z z  z 
2

0
2

1

2

2
 + b nx nx dxn

n

 

 z
1

2

sin . sin


 

= 0 + 0 + b
n
 . 

b x nxdxn 
z1 2

 

 

f ( )sin

Cor – 1 : Making  = 0, the integral becomes 0 < x < 2, and Formulae (1) reduces to

a
0
= 

1

0

2





f ( )x dxz
a

n
 = 

1

0

2





f ( )cosx nxdxz b
n
 = 

1

0

2





f ( )sinx nxdxz
Cor 2 : Putting  = –, the interval becomes – < x < , the Formulae (1) becomes

a
0
 = 

1

 



f ( )x dx
z a

n 
= 

1

 



f ( )cosx nxdx
z  b

n
= 

1

 



f ( )sinx nxdx
z

Working Rule
Let f (x) be a periodic function with period 2. If the given interval is (–, ) :

Step – 1. Check whether f (x) is an even function or odd function.
Step – 2. (a) If f (x) is an even function, then b

n
 = 0 for all n and

a f xn  z2
0





b g  cos nx dx, for all n  0.

            (b) If f (x) is an odd function then a
n
 = 0 for all n  0 and

b f x nx dxn  z2
0





b g sin .
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Step – 3. If f (x) is neither an even function nor an odd function in (–, ) or if the given interval
is not (–), then calculate the Fourier coefficients by using Euler’s formulae.

Illustrative Examples

Example –1 : Find the Fourier expansion of f(x) = x in – < x < .
Soln: Let f (x) = x. Since f (x) is an odd functions, a

n
 = 0 for all n  0.

          Also,      b f x nx dxn  z2
0





b g sin   z2
0





x nx dxsin





L
NM

O
QP

2
2

0


x nx

n

nx

n

cos sin




2 2


 


cos

cos
n

n

n


 





2 1 2 1

1b g b gn n

n

 








x
nx

n

n

n

2
1

1

1

b g sin

   
L
NM

O
QP2

1

2

2

3

3

sin sin sinx x x


Example – 2. Find the Fourier series for f(x) = x2 in – < x and deduce that

         (i)   
1

n2
n 1



   and    (ii) 
1

(2n 1)2
n 1 



    (iii) 
( 1)

n

n-1

2
n 1







 (iv) 
1

n4
n 1







4

90

Soln : (i) Let f(x) = x2; so that its Fourier representation is expressed as

f (x) = x2 = 
a0

2
 + a nx b nxn n

nn

cos sin









11

.......(1)

where a
0
 = 

1 1 2

3
2

2

 











f ( )x dx x dx 






 zz
a

n
= 

1 1 2

  







f ( ) cos cosx nxdx x nxdx
 zz  =

1
2 2

0



. cosx nx dxz
  
L
NM

O
QP

2 2 22

2 3

0



x nx

n

x nx

n

nx

n

sin cos sin
 
L
NM

O
QP

2 2
2

 cosn

n
 1

4
2b gn

n
.

and b
n
 = f ( )sin sinx nxdx x nxdx 

 zz 1
02

 







Substituting these values in (1); we get

f(x) = 
2

2 2 23
4

1

1

1

2
2

1

3
3


 

L
NM

O
QPcos cos cos ...x x x
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Substituting x = ; we get

2 = 
2

2 2 23
4

1

1

1

2

1

3
   
L
NM

O
QP......

 2 – 
2

2 2 23
4

1

1

1

2

1

3
   
F
HG

I
KJ.....  

2

3
4

1

1

1

2

1

3

2

2 2 2


   
F
HG

I
KJ.....


2

2 2 26

1

1

1

2

1

3
   
F
HG

I
KJ.....   

1

62

2

n
 



(ii)
1

2 1

1

1

1

3

1

5

1

72 2 2 2 2
1 ( )

.....
nn 

    






= 
1

1

1

3

1

5

1

2

1

4

1

2

1

4

1

62 2 2 2 2 2 2 2
         .... .... .....

= 
1

1

1

2

1

3

1

4

1

52 2 2 2 2
     + ...... +  ..... – 

1

2

1

1

1

2

1

32 2 2 2
  

F
HG

I
KJ.....

= 
1 1

2

1
2 2 2n n
   = 

 2 2

6

1

4 6
   = 

3

24 8

2 2 


(iii) Now we have to prove 







1

12

1

2

2b gn
n



L.H.S. 



1

1

2

b gn
n

 = 
1

1

1

2

1

3

1

42 2 2 2
   ....

Now the given series will be

x2 = 
2

23

4 1





( )
cos

n

n
nx

put x = 0

0 = 
2

23

4 1
0




( )
cos

n

n
    or







2

23

4 1( )n

n

or
2

2
112

1
 








( )n

n n
= 

( ) 






1 1

2
1

n

n n
  or

2

2 2 2 212

1

1

1

2

1

3

1

4
     + ......

(iv)
1

904

4

n



x2 = 
2

2
1

3
4 1 





( )
cosn

n

x

n
 , a

0
= 

2

3

2

a
n 
= 

4 1
0

2

( )
,




n

n
n

b
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f (x) = 
a

a nx b nxn n

n

0

12
 





( cos sin ) .... (1)

Multiplying f (x) in (1) and integrate within limit – to 

[ ( )] ( ) ( ) cosf f fx dx
a

x dx a x nxdxn
2 0

2
 

 zzz 











 [ ( )] ( ) ( )cosf f fx dx
a

x dx a x nxdxn
2 0

2
 

  z zz 











 [ ( )] ( ) ( )cosf f fx dx
a

x dx a x nxdxn
2 0

2
 

  z zz 











 ( ) cosx dx
a

x dx a x nx dxn
2 2 0 2 2

2  z z z 












 x dx
a

a a an n
4 0

0
2z   





 


x

a an

5

0
2 2

5 2
L
NM
O
QP

 







 


 5 5

0
2

2

5 5 2


F
HG

I
KJ  
L
NM

O
QP

a
a n 

2

5

4

18

165 4

4





 
F
HG

I
KJ

n


2

5

4

18

164 4

4

 
 

n


2

5

4

18

164 4

4

 
 

n


36 20

90
16

14 4

4

 
 

n


16

90
16

14

4


 

n


1

904

4

n



Example – 3 : Find the Fourier series to represents x – x2 from x = – to 

Soln : Given, f (x) = x – x2, x = –  to x = 

Let the Fourier series be

f (x) = 
a

a n x b nxn n

nn

0

11
2
 









 cos sin

so, a
0
= 

1 2

 



( )x x dx
z   = 

1

2 3

1

2 3 2 3

2 3 2 3 2 3

 

   




x x


F
HG

I
KJ  

F
HG

I
KJ  
F
HG

I
KJ

L
N
MM

O
Q
PP

    
L
NM

O
QP

1

2 3 2 3

2 3 2 3



   
 = – 

2

3

2
...... (1)
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a
n 
= 

1

 



f ( ).cosx nxdx
z    =

1 2

 



( )cosx x nxdx
z

= 
1

1 2 22

2 3




( )
sin

( )
cos

( )
sin

x x
nx

n
x

nx

n

nx

n

F
HG
I
KJ  

F
HG

I
KJ  

F
HG

I
KJ

L
NM

O
QP [ sin ] n 0

= 
1

1 2
2 



( )
cos


L
NM

O
QP

x
nx

n
   = 

1
1 2 1 2

2n
n n


   [( ) cos ( ) cos ]  

= 
cos

[ ]
n

n




 

2
1 2 1 2    = 

 4 1
2





( )n

n

 4 1

2

b gn
n

......(2)

b
n
 = 

1

 



f ( )sinx nxdx
z    = 

1 2

 



( ) sinx x nxdx
z

= 
1

1 2 22
2 3





( )
cos

( )
sin

( )
cos

x x
nx

n
x

nx

n

nx

n


F
HG

I
KJ  

F
HG

I
KJ  
F
HG
I
KJ

L
NM

O
QP

= 
1

22
3





( )
cos cos

x x
nx

n

nx

n


F
HG

I
KJ 

L
NM

O
QP   = 




L
NM

O
QP

1 22

3



( )cos cosx x nx

n

nx

n

= 



F
HG

I
KJ    
RST

UVW
L
N
MM

O
Q
PP

1 2

2

22

3

2

3

   
 

 ( )cos cos cos cosn

n

n

n

n n

n
d i

=      
F
HG

I
KJ

L
NM

O
QP

1 2 22

3

2

3
 

 
 

 
( )

cos cos
( )

cos cosn

n

n

n

n

n

n

n

=    
cos

( )
n

n




   2 2

= – 
 2 1( )n

n
...... (1)

 So the required Fourier series becomes

 
 


 










2

2
11

3

4 1 2 1( )
cos

( )
sin

n n

nn n
nx

n
nx

=  














2

2
113

4
1

2
1( )

cos
( )

sin
n n

nn n
nx

n
nx

=     
F
HG

I
KJ

2

2 2 23
4

1

2

2

3

3

cos cos cos
.......

x x x
 – 2 


 

F
HG

I
KJ

sin sin sinx x x

1

2

2

3

3

=    
F
HG

I
KJ

2

2 2 23
4

1

2

2

3

3

cos cos cos
.......

x x x
 +2 

sin sin sin
.........

x x x

1

2

2

3

3
 

F
HG

I
KJ
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Example – 4 : Obtain the Fourier series for f(x) = e–x, in the interval 0 < x < 2

Soln: Given f(x) = e–x, 0 < x < 2.

Let the Fourier series be

f(x) = 
a

a nxn

n

0

1
2






 cos 




b nxn

n

sin
1

a
0
 = 

1

0

2





f ( )x dxz  = 
1

0

2





e dxxz   = 
1

1

1 1
1

0

2

0

2 2

  


 e

e e
x

x


 



L
NM
O
QP







  = 
1 2 e 



a
n
 = 

1

0

2





f ( )x dxz  = 
1

0

2





e nx dxxz cos

Let e nx dxxz cos
0

2

 = e
nx

n
xL
NM

O
QP.

sin

0

2

– 
F
HG

I
KJ

z 1
0

2 b ge nx

n
dxx sin

= 
1

0

2

n
e nx dxxz sin



= 
1

1
0

0n
e

nx

n
e

nx

n
dx

x x



L

NM
O
QP  

F
HG

I
KJ

R
S|
T|

U
V|
W|z( cos )

( )
cos




= 
1 1

0
0n

e
nx

n n
e nx dx

x x
L
NM

O
QP 

R
S|
T|

U
V|
W|





zcos

cos




  = 


  z1
2 1

1
2

2
2 0

2

n
e n

n
e nxdxx



cos cos

 1
1 1
2

2

20

2


F
HG
I
KJ 


zn

e nxdx
e

n

x cos


  e nxdx
e

n

n

n

e

n

x
 










z cos
1

1

1

1

2

2

2

2

2

20

2  

 e nxdx
e

n

x





z cos
1

1

2

20

2 


1 1

1

2

20

2

 



e nxdx
e

n

x





z cos
( )

b
n
 = 

1

0

2





f ( )sinx nx dxz  = 
1

0

2





e nx dxxz .sin

Let  e nx dxxz .sin
0

2

  = e
nx

n
e

nx

n
dxx x F

HG
I
KJ

L
NM

O
QP  

F
HG

I
KJzcos

( ).
cos

0

2

0

2

1




=  
F
HG

I
KJ 

 ze
n
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Example – 5.  Expand f(x) = cos ax as a Fourier series in (–, ) where a is not an integer.
Soln : Since cos ax is an even function, b
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 = 0 for all n.
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Example – 6. Find the Fourier series corresponding to f x
x

2

2

a f  F
H
I
K


 in (0, 2). Hence prove

that 
1

n 62

2

n 1









.

Soln : a f x dx
x

dx
x

0

2 3

0

2

0

2

0

2
1 1

4

1

12
 








L
N
MM

O
Q
PPzz 








b g b g b g
 


  

1

12 6
3 3

2


 


.

Now a f x nx dx x nx dxn   zz1 1

4

2

0

2

0

2

 




a f a fcos cos





L
NM

O
QP  z1

4

2

4

2

0

2

0

2







 

x
nx

n n
x nxb g b gsin

sin

  
F
HG

I
KJz1

2
0

2

n
x d

nx

n




b g cos



   

1

2
1 0

2

2

n

n


 b g


1
2n

 Also b x nx dxn  z1

4

2

0

2






b g sin

  
L
NM

O
QP  z1

4

1

2

2

0

2

0

2







 

x
nx

n n
x nxb g b gcos

cos





L
NM

O
QP  z1

2

1

22
0

2

2

0

2

n
x nx

n
nx dx






 

b g sin sin  = 0


F

HG
I
KJ

 
F
HG
I
KJ






 x nx

nn

b g2 2
2

2
1

2 12

cos
.

     Put x = 0 in the above result. 
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6.5 : Conditions For A Fourier Series

Dirichlet conditions :
So far we have obtained Fourier series for several functions that it is possible to expand

most of the functions as Fourier series. It was the German Mathematician peter Gustav Lejeune
Dirichlet (1805-1859) who gave the well-known sufficient conditions for uniform convergence of
the Fourier series as stated below.
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Any function f(x) can be expanded as a Fourier series 
a
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, b

n
 are costants, provided that

(i) f(x) is periodic, single valued & finite
(ii) f(x) has only a finite number of finite discontinuities and has no infinite discontinuities.
(iii) f(x) has only a finite number of local maxima and minima
These conditions are known as Dirichlet conditions.
In otherwards if f(x) is a function defined in a given interval [, + 2] and extended

outside this interval by f (x + 2) = f(x) having finite number of points of ordinary discontinuity in
the interval [, + 2and having a finite number of local maxima and minima there, then the
series.
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a nx b nxn n
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2
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with co-efficients a
0
, a

n
, b

n
  converges to f(x) at every points of continuity and to ½ [f (x + 0)

+ f (x – 0)] at a point of discontinuity.
Here f (x + 0) and f (x – 0) denote the  limit on the right and the limit on the left respectively.

At a point of discontinuity the sum of the series is equal to the mean of the limits on the right and
the left.

Note : Consider the function f(x) = sin 
1

x
in the interval (– , ). It attains it’s maximum

value when

1

x
= (2n – 1) 



2
or, x = 

2

2 1( )n  

Where n is zero or an integer. For large values of n as n   , the values of x as given by
(i) tend to become indefinitely small and are croweded near to the value x = 0. Thus the function

sin
1

x
has an infinite number of maxima and minima in the neighbourhood at x = 0, Since as such

one of the Dirichlet conditions not satisfied. Hence it is not possible to expand f(x) = sin 
1

x
in the

interval (–) as it contains x = 0 also.

Simillarly, the function f(x) = 
1

x a
 has an infinite discontinuity at x = a, and as such it

cannot be expanded as Fourier series in the interval which contain the point x = a.

6.6 :  Fourier series for Discontinuous Function

Let the function f(x) defined by f(x)
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 is the point of discontinuity in the interval ()

In such cases also we obtain the Fourier series for f(x) in the usual way. The values of a
0
, a

n
,

b
n
 are evaluated by (fig. 6.4)
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 , is the point of the finite discontinuity, the sum of the Fourier series
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Note :(1) It may be seen from the graph, that at a point of finite discontinuity at x = x
0
, there is

a finite jumps equal to BC in the value of the function f(x) at x = x
0
.

(2) A given function f(x) may be defined by different formula in different regions. Such
types of functions are quite common in Fourier series.

(3) At a point of discontinuity the sum of the series is equal to the mean of the limits on the
right and left.

Illustrative Examples

Example – 1 : State give reasons whether the following functions can be expanded in Fourier
series in the interval –   x   .

(1) cosec x, (Ans - No) f(x) = cosec x, = 
1

sin x in the interval (–). It attains maximum

value when x  = 
1

1
2

n n


 ( )
 ............(1)

where n is zero or an integer. For large values of n as n  0, the values of x as given by (1)

tend to become indefinitely small and crowded near to the value x = 0. Thus function 
1

sin x has an

infinite number of maxima and minima in the neighbourhood of x = 0, As such one of the Dirichlet’s
conditions is not satisfied. It is not possible to expand f(x) = cosec x in the interval (–, ) as it
contains x = 0 also

(ii) f(x)  = sin 
1

x
, No, because in the interval (–, ) . It attains it’s maximum value when

1
2 1

2x
n ( )


or x = 

2

2 1( )n  
...... (1)

where n is zero or integer
For large values of n as n  , the values of x as given by (i) tend to become indefinitely.

Small and are crowded near to the value x = 0. Thus the function sin x has an infinite number of
maxima and minima in the neighbourhood of x = 0. As such one of the Dirichlet’s condition is not

satisfied. Hence it is not possible to expand f(x) = sin 
1

x
in the interval (–, ) as it contains x = 0

also.

(Fig.6.4)


